Welcome to LookChem.com Sign In|Join Free

CAS

  • or

22144-60-1

Post Buying Request

22144-60-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

22144-60-1 Usage

Uses

(R)-(+)-1-Phenyl-1-butanol can be used as a substrate in the thermodynamic studies of:Transesterification of phenyl alkanols with butyl acetate in the presence of lipase enzyme.Reduction of phenyl alkanones in the presence of ketoreductase enzyme.

Check Digit Verification of cas no

The CAS Registry Mumber 22144-60-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,2,1,4 and 4 respectively; the second part has 2 digits, 6 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 22144-60:
(7*2)+(6*2)+(5*1)+(4*4)+(3*4)+(2*6)+(1*0)=71
71 % 10 = 1
So 22144-60-1 is a valid CAS Registry Number.
InChI:InChI=1/C10H14O/c1-2-6-10(11)9-7-4-3-5-8-9/h3-5,7-8,10-11H,2,6H2,1H3/t10-/m1/s1

22144-60-1 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Aldrich

  • (317314)  (R)-(+)-1-Phenyl-1-butanol  97%

  • 22144-60-1

  • 317314-1G

  • 1,579.50CNY

  • Detail

22144-60-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name (1R)-1-Phenyl-1-butanol

1.2 Other means of identification

Product number -
Other names (3R)-(+)-1-Benzyl-3-(tert-butoxycarbonylamino)pyrrolidine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:22144-60-1 SDS

22144-60-1Relevant articles and documents

Manganese catalyzed asymmetric transfer hydrogenation of ketones

Zhang, Guang-Ya,Ruan, Sun-Hong,Li, Yan-Yun,Gao, Jing-Xing

supporting information, p. 1415 - 1418 (2020/11/20)

The asymmetric transfer hydrogenation (ATH) of a wide range of ketones catalyzed by manganese complex as well as chiral PxNy-type ligand under mild conditions was investigated. Using 2-propanol as hydrogen source, various ketones could be enantioselectively hydrogenated by combining cheap, readily available [MnBr(CO)5] with chiral, 22-membered macrocyclic ligand (R,R,R',R')-CyP2N4 (L5) with 2 mol% of catalyst loading, affording highly valuable chiral alcohols with up to 95% ee.

Cobalt-catalyzed asymmetric hydrogenation of ketones: A remarkable additive effect on enantioselectivity

Du, Tian,Wang, Biwen,Wang, Chao,Xiao, Jianliang,Tang, Weijun

supporting information, p. 1241 - 1244 (2020/10/02)

A chiral cobalt pincer complex, when combined with an achiral electron-rich mono-phosphine ligand, catalyzes efficient asymmetric hydrogenation of a wide range of aryl ketones, affording chiral alcohols with high yields and moderate to excellent enantioselectivities (29 examples, up to 93% ee). Notably, the achiral mono-phosphine ligand shows a remarkable effect on the enantioselectivity of the reaction.

A relay catalysis strategy for enantioselective nickel-catalyzed migratory hydroarylation forming chiral α-aryl alkylboronates

Chen, Jian,Liang, Yong,Ma, Jiawei,Meng, Lingpu,Zhang, Yao,Zhu, Shaolin

supporting information, p. 3171 - 3188 (2021/11/16)

Ligand-controlled reactivity plays an important role in transition-metal catalysis, enabling a vast number of efficient transformations to be discovered and developed. However, a single ligand is generally used to promote all steps of the catalytic cycle (e.g., oxidative addition, reductive elimination), a requirement that makes ligand design challenging and limits its generality, especially in relay asymmetric transformations. We hypothesized that multiple ligands with a metal center might be used to sequentially promote multiple catalytic steps, thereby combining complementary catalytic reactivities through a simple combination of simple ligands. With this relay catalysis strategy (L/L?), we report here the first highly regio- and enantioselective remote hydroarylation process. By synergistic combination of a known chain-walking ligand and a simple asymmetric cross-coupling ligand with the nickel catalyst, enantioenriched α-aryl alkylboronates could be rapidly obtained as versatile synthetic intermediates through this formal asymmetric remote C(sp3)-H arylation process.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 22144-60-1