22144-60-1Relevant articles and documents
Manganese catalyzed asymmetric transfer hydrogenation of ketones
Zhang, Guang-Ya,Ruan, Sun-Hong,Li, Yan-Yun,Gao, Jing-Xing
supporting information, p. 1415 - 1418 (2020/11/20)
The asymmetric transfer hydrogenation (ATH) of a wide range of ketones catalyzed by manganese complex as well as chiral PxNy-type ligand under mild conditions was investigated. Using 2-propanol as hydrogen source, various ketones could be enantioselectively hydrogenated by combining cheap, readily available [MnBr(CO)5] with chiral, 22-membered macrocyclic ligand (R,R,R',R')-CyP2N4 (L5) with 2 mol% of catalyst loading, affording highly valuable chiral alcohols with up to 95% ee.
Ruthenium-catalyzed hydrogenation of aromatic ketones using chiral diamine and monodentate achiral phosphine ligands
Wang, Mengna,Zhang, Ling,Sun, Hao,Chen, Qian,Jiang, Jian,Li, Linlin,Zhang, Lin,Li, Li,Li, Chun
, (2021/03/24)
The Ru-catalyzed asymmetric hydrogenation of ketones with chiral diamine and monodentate achiral phosphine has been developed. A wide range of ketones were hydrogenated to afford the corresponding chiral secondary alcohols in good to excellent enantioselectivities (up to 98.1% ee). In addition, an appropriate mechanism for the asymmetric hydrogenation was proposed and verified by NMR spectroscopy.
Cobalt-catalyzed asymmetric hydrogenation of ketones: A remarkable additive effect on enantioselectivity
Du, Tian,Wang, Biwen,Wang, Chao,Xiao, Jianliang,Tang, Weijun
supporting information, p. 1241 - 1244 (2020/10/02)
A chiral cobalt pincer complex, when combined with an achiral electron-rich mono-phosphine ligand, catalyzes efficient asymmetric hydrogenation of a wide range of aryl ketones, affording chiral alcohols with high yields and moderate to excellent enantioselectivities (29 examples, up to 93% ee). Notably, the achiral mono-phosphine ligand shows a remarkable effect on the enantioselectivity of the reaction.
Method for asymmetric functionalization of nickel-hydrogen catalytic olefin migration promoted by ligand relay strategy
-
Paragraph 0089-0091, (2021/06/12)
The invention discloses a method for asymmetric functionalization of nickel-hydrogen catalytic olefin migration promoted by a ligand relay strategy. Under the action of a metal nickel salt, an achiral ligand, a chiral ligand, alkali, a hydrogen source, an additive and the like, olefin and various electrophilic reagents are dissolved in an organic solvent for reaction, and the chiral compound with excellent regioselectivity and enantioselectivity is obtained. According to the method, the chiral compound containing various functional groups can be efficiently synthesized, the product has high enantioselectivity, the raw materials are simple and easy to obtain, and operation is easy and convenient.
A relay catalysis strategy for enantioselective nickel-catalyzed migratory hydroarylation forming chiral α-aryl alkylboronates
Chen, Jian,Liang, Yong,Ma, Jiawei,Meng, Lingpu,Zhang, Yao,Zhu, Shaolin
supporting information, p. 3171 - 3188 (2021/11/16)
Ligand-controlled reactivity plays an important role in transition-metal catalysis, enabling a vast number of efficient transformations to be discovered and developed. However, a single ligand is generally used to promote all steps of the catalytic cycle (e.g., oxidative addition, reductive elimination), a requirement that makes ligand design challenging and limits its generality, especially in relay asymmetric transformations. We hypothesized that multiple ligands with a metal center might be used to sequentially promote multiple catalytic steps, thereby combining complementary catalytic reactivities through a simple combination of simple ligands. With this relay catalysis strategy (L/L?), we report here the first highly regio- and enantioselective remote hydroarylation process. By synergistic combination of a known chain-walking ligand and a simple asymmetric cross-coupling ligand with the nickel catalyst, enantioenriched α-aryl alkylboronates could be rapidly obtained as versatile synthetic intermediates through this formal asymmetric remote C(sp3)-H arylation process.
Compartmentalization and Photoregulating Pathways for Incompatible Tandem Catalysis
Qu, Peiyuan,Kuepfert, Michael,Hashmi, Maryam,Weck, Marcus
supporting information, p. 4705 - 4713 (2021/04/07)
This contribution describes an advanced compartmentalized micellar nanoreactor that possesses a reversible photoresponsive feature and its application toward photoregulating reaction pathways for incompatible tandem catalysis under aqueous conditions. The
Highly Active Cooperative Lewis Acid—Ammonium Salt Catalyst for the Enantioselective Hydroboration of Ketones
Titze, Marvin,Heitk?mper, Juliane,Junge, Thorsten,K?stner, Johannes,Peters, René
supporting information, p. 5544 - 5553 (2021/02/05)
Enantiopure secondary alcohols are fundamental high-value synthetic building blocks. One of the most attractive ways to get access to this compound class is the catalytic hydroboration. We describe a new concept for this reaction type that allowed for exceptional catalytic turnover numbers (up to 15 400), which were increased by around 1.5–3 orders of magnitude compared to the most active catalysts previously reported. In our concept an aprotic ammonium halide moiety cooperates with an oxophilic Lewis acid within the same catalyst molecule. Control experiments reveal that both catalytic centers are essential for the observed activity. Kinetic, spectroscopic and computational studies show that the hydride transfer is rate limiting and proceeds via a concerted mechanism, in which hydride at Boron is continuously displaced by iodide, reminiscent to an SN2 reaction. The catalyst, which is accessible in high yields in few steps, was found to be stable during catalysis, readily recyclable and could be reused 10 times still efficiently working.
An Enantioconvergent Benzylic Hydroxylation Using a Chiral Aryl Iodide in a Dual Activation Mode
Abazid, Ayham H.,Clamor, Nils,Nachtsheim, Boris J.
, p. 8042 - 8048 (2020/09/21)
The application of a triazole-substituted chiral iodoarene in a direct enantioselective hydroxylation of alkyl arenes is reported. This method allows the rapid synthesis of chiral benzyl alcohols in high yields and stereocontrol, despite its nontemplated nature. In a cascade activation consisting of an initial irradiation-induced radical C-H-bromination and a consecutive enantioconvergent hydroxylation, the iodoarene catalyst has a dual role. It initiates the radical bromination in its oxidized state through an in-situ-formed bromoiodane and in the second, Cu-catalyzed step, it acts as a chiral ligand. This work demonstrates the ability of a chiral aryl iodide catalyst acting both as an oxidant and as a chiral ligand in a highly enantioselective C-H-activating transformation. Furthermore, this concept presents an enantioconvergent hydroxylation with high selectivity using a synthetic catalyst.
Chiral amino-pyridine-phosphine tridentate ligand, manganese complex, and preparation method and application thereof
-
Paragraph 0597-0600; 0602, (2020/07/13)
The invention discloses a chiral amino-pyridine-phosphine tridentate ligand, a manganese complex, and a preparation method and application thereof. The chiral amino-pyridine-phosphine tridentate ligand is shown as a formula II, and the manganese complex of the chiral amino-pyridine-phosphine tridentate ligand can be used for efficiently catalyzing and hydrogenating ketone compounds to prepare chiral alcohol compounds in a high enantioselectivity mode. The chiral amino-pyridine-phosphine tridentate ligand and the manganese complex are simple in synthesis process, good in stability, high in catalytic activity and mild in reaction conditions.
Manganese-Catalyzed Enantioselective Hydrogenation of Simple Ketones Using an Imidazole-Based Chiral PNN Tridentate Ligand
Chen, Jiachen,Hou, Huacui,Ling, Fei,Nian, Sanfei,Wu, Feifei,Xu, Min,Yi, Xiao,Zhong, Weihui
supporting information, p. 285 - 289 (2020/02/18)
A series of Mn(I) catalysts containing imidazole-based chiral PNN tridentate ligands with controllable 'side arm' groups have been established, enabling the inexpensive base-promoted asymmetric hydrogenation of simple ketones with outstanding activities (up to 8200 TON) and good enantioselectivities (up to 88.5percent ee). This protocol features wide substrate scope and functional group tolerance, thereby providing easy access to a key intermediate of crizotinib.