Welcome to LookChem.com Sign In|Join Free

CAS

  • or

27203-92-5

Post Buying Request

27203-92-5 Suppliers

Recommended suppliersmore

This product is a nationally controlled contraband, and the Lookchem platform doesn't provide relevant sales information.

27203-92-5 Usage

Treatment in Particular diseases

In Osteoarthritis: Tramadol with or without acetaminophen has modest analgesic effects in patients with Osteoarthritis. It may also be effective as add-on therapy in patients taking concomitant NSAIDs or COX-2 selective inhibitors. As with opioids, tramadol may be helpful for patients who cannot take NSAIDs or COX-2 selective inhibitors. Tramadol should be initiated at a lower dose (100 mg/day in divided doses) and may be titrated as needed for pain control to a dose of 200 mg/ day. It is available in a combination tablet with acetaminophen and as a sustained-release tablet. Opioid-like adverse effects such as nausea, vomiting, dizziness, constipation, headache, and somnolence are common.

Chemical Properties

Light Yellow Oil

Uses

Different sources of media describe the Uses of 27203-92-5 differently. You can refer to the following data:
1. Tramadol is thought to produce analgesia by two distinct actions. First, it has agonist activity at the MOP and KOP receptors. Tramadol itself is a prodrug, with most of its analgesia mediated by a metabolite – O-desmethyltramadol – that has a 200-fold higher affinity for the MOP receptor. I t is metabolised by cytochrome P450 (CYP2D6 and CYP3A4), and its potency is therefore affected by a patient's CYP genetics, with rapid and poor metabolisers. S econd, it enhances the descending inhibitory systems in the spinal cord by inhibiting noradrenaline reuptake and releasing serotonin from nerve endings. It is available in immediate- and sustained-release oral preparations and for parenteral administration. I ts use is contraindicated in patients receiving monoamine oxidase inhibitors (MAOIs). Caution must also be exercised in hepatic impairment as its clearance is reduced to a much greater extent than morphine and related agents.
2. An Analgesic. Used in the treatment of urinary incontinence

Brand name

Trabar.

Therapeutic Function

Analgesic

General Description

Tramadol (Ultram) is an analgesic agent with multiple mechanismsof action. It is a weak μ-agonist with approximately30% of the analgesic effect antagonized by the opioid antagonistnaloxone. Used at recommended doses, it has minimaleffects on respiratory rate, heart rate, blood pressure, or GItransit times. Structurally, tramadol resembles codeine with the B, D, and E ring removed. The manufacturer states thatpatients allergic to codeine should not receive tramadol, becausethey may be at increased risk for anaphylactic reactions. Tramadol is synthesized and marketed as the racemicmixture of two (the [2S, 3S] [-] and the [2R, 3R] [+]) of thefour possible enantiomers. The (+) enantiomer is about30 times more potent than the (—) enantiomer; however,racemic tramadol shows improved tolerability.Neurotransmitter reuptake inhibition is also responsible forsome of the analgesic activity with the (—) enantiomer primarilyresponsible for norepinephrine reuptake and the (+)enantiomer responsible for inhibiting serotonin reuptake. Like codeine, tramadol is O-demethylated viaCYP2D6 to a more potent opioid agonist having 200-foldhigher affinity for the opioid receptor than the parent compound.Tramadol was initially marketed as nonaddictive, anda 3-year follow up study showed that the abuse potential isvery low, but not zero. Most abusers of tramadol have abusedopioid drugs in the past. Both enantiomers of tramadoland the major O-demethylated metabolite are proconvulsive,and tramadol should not be used in patients with a lowseizurethreshold including patients with epilepsy.

Mechanism of action

Fentanyl is a μ agonist with approximately 80 times greater potency than morphine. Fentanyl has been used in combination with nitrous oxide for “ balanced” anesthesia and in combination with droperidol for “ neurolepalgesia.” The advantages of fentanyl over morphine for anesthetic procedures are its shorter duration of action (1–2 hours) and the fact that it does not cause histamine release on intravenous injection.

Pharmacokinetics

The analgesic activity of tramadol is attributed to a synergistic effect caused by the opioid activity of the (+)-isomer and the neurotransmitter reuptake blocking effect of the (–)-isomer. The (+)-isomer possesses weak μ opioid agonist activity equivalent to approximately 1/3,800 that of morphine. The O-desmethyl metabolite (CYP2D6) of (±)-tramadol has improved μ opioid activity equivalent to 1/35 that of morphine. Affinity for both δ and κ receptors is improved. Despite its higher opioid potency, the contribution of O-desmethlytramedol to the overall analgesic effect has been questioned but not well studied. Individuals who lack CYP2D6 or are taking a CYP2D6 inhibitor have a reduced effect to tramadol. The fact that naloxone causes a decrease in the analgesic potency of tramadol argues strongly for an opioid component to the analgesic activity. (–)-T ramadol possesses only 1/20 the opioid activity of its (+)-isomer, but it has good activities for inhibition of norepinephrine (Ki = 0.78 μM) and serotonin (Ki = 0.99 μM) reuptake. Tramadol's neurotransmitter reuptake activity is approximately 1/20 that of imipramine, a tricyclic antidepressant agent that is used widely in pain management. Although none of the individual pharmacological activities of tramadol is impressive, they interact to give a synergistic analgesic effect that is clinically useful. Tramadol has been used in Europe since the 1980s and was introduced to the U.S. market in 1995. The drug is nonaddicting and, thus, is not a scheduled agent. In addition, tramadol does not cause respiratory depression or constipation.

Check Digit Verification of cas no

The CAS Registry Mumber 27203-92-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,7,2,0 and 3 respectively; the second part has 2 digits, 9 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 27203-92:
(7*2)+(6*7)+(5*2)+(4*0)+(3*3)+(2*9)+(1*2)=95
95 % 10 = 5
So 27203-92-5 is a valid CAS Registry Number.
InChI:InChI=1/C16H25NO2/c1-17(2)12-14-7-4-5-10-16(14,18)13-8-6-9-15(11-13)19-3/h6,8-9,11,14,18H,4-5,7,10,12H2,1-3H3/t14-,16+/m1/s1

27203-92-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name Tramadol

1.2 Other means of identification

Product number -
Other names Ralivia flashtab

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:27203-92-5 SDS

27203-92-5Relevant articles and documents

Continuous-Flow Synthesis of Tramadol from Cyclohexanone

Monos, Timothy M.,Jaworski, Jonathan N.,Stephens, John C.,Jamison, Timothy F.

, p. 1888 - 1893 (2020/11/24)

A multioperation, continuous-flow platform for the synthesis of tramadol, ranging from gram to decagram quantities, is described. The platform is segmented into two halves allowing for a single operator to modulate between preparation of the intermediate by Mannich addition or complete the fully concatenated synthesis. All purification operations are incorporated in-line for the Mannich reaction. 'Flash' reactivity between meta-methoxyphenyl magnesium bromide and the Mannich product was controlled with a static helical mixer and tested with a combination of flow and batch-based and factorial evaluations. These efforts culminated in a rapid production rate of tramadol (13.7 g°h -1) sustained over 56 reactor volumes. A comparison of process metrics including E-Factor, production rate, and space-time yield are used to contextualize the developed platform with respect to established engineering and synthetic methods for making tramadol.

Across-the-World Automated Optimization and Continuous-Flow Synthesis of Pharmaceutical Agents Operating Through a Cloud-Based Server

Fitzpatrick, Daniel E.,Maujean, Timothé,Evans, Amanda C.,Ley, Steven V.

supporting information, p. 15128 - 15132 (2018/10/31)

The power of the Cloud has been harnessed for pharmaceutical compound production with remote servers based in Tokyo, Japan being left to autonomously find optimal synthesis conditions for three active pharmaceutical ingredients (APIs) in laboratories in Cambridge, UK. A researcher located in Los Angeles, USA controlled the entire process via an internet connection. The constituent synthetic steps for Tramadol, Lidocaine, and Bupropion were thus optimized with minimal intervention from operators within hours, yielding conditions satisfying customizable evaluation functions for all examples.

Optimization of throughput in semipreparative chiral liquid chromatography using stacked injection

Taheri, Mohammadreza,Fotovati, Mohsen,Hosseini, Seyed-Kiumars,Ghassempour, Alireza

, p. 579 - 588 (2017/09/29)

An interesting mode of chromatography for preparation of pure enantiomers from pure samples is the method of stacked injection as a pseudocontinuous procedure. Maximum throughput and minimal production costs can be achieved by the use of total chiral column length in this mode of chromatography. To maximize sample loading, often touching bands of the two enantiomers is automatically achieved. Conventional equations show direct correlation between touching-band loadability and the selectivity factor of two enantiomers. The important question for one who wants to obtain the highest throughput is “How to optimize different factors including selectivity, resolution, run time, and loading of the sample in order to save time without missing the touching-band resolution?” To answer this question, tramadol and propranolol were separated on cellulose 3,5-dimethyl phenyl carbamate, as two pure racemic mixtures with low and high solubilities in mobile phase, respectively. The mobile phase composition consisted of n-hexane solvent with alcohol modifier and diethylamine as the additive. A response surface methodology based on central composite design was used to optimize separation factors against the main responses. According to the stacked injection properties, two processes were investigated for maximizing throughput: one with a poorly soluble and another with a highly soluble racemic mixture. For each case, different optimization possibilities were inspected. It was revealed that resolution is a crucial response for separations of this kind. Peak area and run time are two critical parameters in optimization of stacked injection for binary mixtures which have low solubility in the mobile phase.