Welcome to LookChem.com Sign In|Join Free

CAS

  • or

41446-63-3

Post Buying Request

41446-63-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

41446-63-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 41446-63-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 4,1,4,4 and 6 respectively; the second part has 2 digits, 6 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 41446-63:
(7*4)+(6*1)+(5*4)+(4*4)+(3*6)+(2*6)+(1*3)=103
103 % 10 = 3
So 41446-63-3 is a valid CAS Registry Number.
InChI:InChI=1S/C14H28/c1-3-5-7-9-11-13-14-12-10-8-6-4-2/h13-14H,3-12H2,1-2H3/b14-13+

41446-63-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name 7-TETRADECENE

1.2 Other means of identification

Product number -
Other names tetradec-7t-ene

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:41446-63-3 SDS

41446-63-3Relevant articles and documents

Cationic Tungsten Imido Alkylidene N-Heterocyclic Carbene Complexes That Contain Bulky Ligands

Buchmeiser, Michael R.,Frey, Wolfgang,Musso, Janis V.,Schowner, Roman

, p. 3145 - 3157 (2021/09/30)

Neutral and cationic tungsten imido alkylidene complexes of the general formulas W(NtBu)(CHR1)(OR2)Cl(NHC), W(N-2,6-bis(2,4,6-tri-iPr-C6H4)phenyl)(CHR1)Cl2(NHC), [W(NtBu)(CHR1)(OR2)(NHC)][B(ArF)4] and [W(N-2,6-bis(2,4,6-tri-iPr-C6H4)phenyl)(CHR1)Cl(NHC)][B(ArF)4] (R1= CMe3, CMe2Ph; R2= sterically demanding alkoxide; B(ArF)4= tetrakis(3,5-(CF3)2-C6H3)borate; NHC = N-heterocyclic carbene) were prepared. Two electronically different NHCs, namely 1,3-dimethylimidazol-2-ylidene (IMe) and 1,3-dimethyl-4,5-dichloroimidazol-2-ylidene (IMeCl), as well as a variety of terphenolates and a chiral biphenolate were employed.Z-selective homometathesis (HM) of unfunctionalized olefins was achieved with a selectivity of up to 90% and decent turnover numbers (TON) of up to 480 in the HM of 1-dodecene. Additionally, the reactivity of the cationic tungstentert-butylimido complexes in the reaction with vinyltrimethylsilane and ethylene was investigated, which yielded the corresponding silyl-alkylidene complex and, for the first time, a fully characterized cationic tungsten(IV) NHC ethylene complex.

Z-Selective Monothiolate Ruthenium Indenylidene Olefin Metathesis Catalysts

Smit, Wietse,Ekeli, Jonas B.,Occhipinti, Giovanni,Wo?niak, Bartosz,T?rnroos, Karl W.,Jensen, Vidar R.

, p. 397 - 407 (2020/02/13)

Ru-alkylidenes bearing sterically demanding arylthiolate ligands (SAr) constitute one of only two classes of catalyst that are Z-selective in metathesis of 1-alkenes. Of particular interest are complexes bearing pyridine as a stabilizing donor ligand, [RuCl(SAr)(a? CHR)(NHC)(py)] (R = phenyl or 2-thienyl, NHC = N-heterocyclic carbene, py = pyridine), which initiate catalysis rapidly and give appreciable yields combined with moderate to high Z-selectivity within minutes at room temperature. Here, we extend this chemistry by synthesizing and testing the first two such complexes (5a and 5b) bearing 3-phenylindenylidene, a ligand known to promote stability in other ruthenium-based olefin metathesis catalysts. The steric pressure resulting from the three bulky ligands (the NHC, the arylthiolate, and the indenylidene) forces the thiolate ligand to position itself trans to the NHC ligand, a configuration different from that of the corresponding alkylidenes. Surprisingly, although this configuration is incompatible with Z-selectivity and slows down pyridine dissociation, the two new complexes initiate readily at room temperature. Although their thermal stability is lower than that of typical indenylidene-bearing catalysts, 5a and 5b are fairly stable in catalysis (TONs up to 2200) and offer up to ca. 80% of the Z-isomer in prototypical metathesis homocoupling reactions. Density functional theory (DFT) calculations confirm the energetic cost of dissociating pyridine from 5a (= M1-Py) to generate 14-electron complex M1. Whereas the latter isomer does not give a metathesis-potent allylbenzene ?-complex, it may isomerize to M1-trans and M2, which both form ?-complexes in which the olefin is correctly oriented for cycloaddition. The olefin orientation in these complexes is also indicative of Z-selectivity.

Specialized ruthenium olefin metathesis catalysts bearing bulky unsymmetrical NHC Ligands: Computations, synthesis, and application

Ma?ecki, Pawe?,Gajda, Katarzyna,Gajda, Roman,Wo?niak, Krzysztof,Trzaskowski, Bartosz,Kajetanowicz, Anna,Grela, Karol

, p. 587 - 598 (2019/01/08)

Second-generation ruthenium olefin metathesis catalysts were investigated with systematic variation of the unsymmetrical uNHC ligands. Depending on the uNHC steric bulk, the catalysts exhibited different activity and selectivity in metathesis reactions. DFT calculations and X-ray crystallographic data were used to understand the influence of uNHC ligand structure on the catalyst properties. Furthermore, the catalysts were examined in the context of reactions that are problematic for general-purpose Ru catalysts, including industrially important self-cross metathesis of α-olefins and ethenolysis of ethyl oleate.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 41446-63-3