Welcome to LookChem.com Sign In|Join Free

CAS

  • or

500-72-1

Post Buying Request

500-72-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

500-72-1 Usage

Synthesis Reference(s)

Journal of Heterocyclic Chemistry, 21, p. 41, 1984 DOI: 10.1002/jhet.5570210110

Check Digit Verification of cas no

The CAS Registry Mumber 500-72-1 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,0 and 0 respectively; the second part has 2 digits, 7 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 500-72:
(5*5)+(4*0)+(3*0)+(2*7)+(1*2)=41
41 % 10 = 1
So 500-72-1 is a valid CAS Registry Number.
InChI:InChI=1/C8H7NO3/c10-7(8(11)12)9-6-4-2-1-3-5-6/h1-5H,(H,9,10)(H,11,12)

500-72-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name Anilino(oxo)acetic acid

1.2 Other means of identification

Product number -
Other names Acetic acid, oxo(phenylamino)-

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:500-72-1 SDS

500-72-1Relevant articles and documents

Novel N-aryl Oxamic Acids

-

Paragraph 0045, (2021/10/11)

The present disclosure relates to novel N-aryl oxamic acid based inhibitors for Mycobacterium tuberculosis protein tyrosine phosphatase B (mPTPB), and to the method of making and using the novel N-aryl oxamic acid based inhibitors. More specifically, compounds provided in this disclosure can be used to inhibit Mycobacterium tuberculosis protein tyrosine phosphatase B (mPTPB) and to treat a patient having a Tuberculosis disease.

ω-Quinazolinonylalkyl aryl ureas as reversible inhibitors of monoacylglycerol lipase

Dato, Florian M.,Neud?rfl, J?rg-Martin,Gütschow, Michael,Goldfuss, Bernd,Pietsch, Markus

supporting information, (2019/11/13)

The serine hydrolase monoacylglycerol lipase (MAGL) is involved in a plethora of pathological conditions, in particular pain and inflammation, various types of cancer, metabolic, neurological and cardiovascular disorders, and is therefore a promising target for drug development. Although a large number of irreversible-acting MAGL inhibitors have been discovered over the past years, there are only few compounds known so far which inhibit the enzyme in a reversible manner. Therefore, much effort is put into the development of novel chemical entities showing reversible inhibitory behavior, which is thought to cause less undesired side effects. To explore a wide range of chemical structures as MAGL binders, we have applied a virtual screening approach by docking small molecules into the crystal structure of human MAGL (hMAGL) and envisaged a library of 45 selected compounds which were then synthesized. Biochemical investigations included the determination of the inhibitory potency on hMAGL and two related hydrolases, i.e. human fatty acid amide hydrolase (hFAAH) and murine cholesterol esterase (mCEase). The most promising candidates from theses analyses, i.e. three ω-quinazolinonylalkyl aryl ureas bearing alkyl spacers of three to five methylene groups, exhibited IC50 values of 20–41 μM and reversible, detergent-insensitive behavior towards hMAGL. Among these compounds, the inhibitor 1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(4-oxo-3,4-dihydroquinazolin-2-yl)butyl)urea (96) was selected for further kinetic characterization, yielding a dissociation constant Ki = 15.4 μM and a mixed-type inhibition with a pronounced competitive component (α = 8.94). This mode of inhibition was further supported by a docking experiment, which suggested that the inhibitor occupies the substrate binding pocket of hMAGL.

Highly Potent and Selective N-Aryl Oxamic Acid-Based Inhibitors for Mycobacterium tuberculosis Protein Tyrosine Phosphatase B

Ruddraraju, Kasi Viswanatharaju,Aggarwal, Devesh,Niu, Congwei,Baker, Erica Anne,Zhang, Ruo-Yu,Wu, Li,Zhang, Zhong-Yin

, p. 9212 - 9227 (2020/10/19)

Tuberculosis is an infectious disease caused by the bacterium Mycobacterium tuberculosis (Mtb). Mtb protein tyrosine phosphatase B (mPTPB) is a virulence factor required for Mtb survival in host macrophages. Consequently, mPTPB represents an exciting target for tuberculosis treatment. Here, we identified N-phenyl oxamic acid as a highly potent and selective monoacid-based phosphotyrosine mimetic for mPTPB inhibition. SAR studies on the initial hit, compound 4 (IC50 = 257 nM), resulted in several highly potent inhibitors with IC50 values lower than 20 nM for mPTPB. Among them, compound 4t showed a Ki of 2.7 nM for mPTPB with over 4500-fold preference over 25 mammalian PTPs. Kinetic, molecular docking, and site-directed mutagenesis analyses confirmed these compounds as active site-directed reversible inhibitors of mPTPB. These inhibitors can reverse the altered host cell immune responses induced by the bacterial phosphatase. Furthermore, the inhibitors possess molecular weights 0.43, and good aqueous solubility and metabolic stability, thus offering excellent starting points for further therapeutic development.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 500-72-1