Welcome to LookChem.com Sign In|Join Free

CAS

  • or

54660-04-7

Post Buying Request

54660-04-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

54660-04-7 Usage

Uses

1-(4-Methoxyphenyl)pyrrolidine is a useful reagent for the preparation of β-methylsulfonylated N-heterocycles.

Check Digit Verification of cas no

The CAS Registry Mumber 54660-04-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,4,6,6 and 0 respectively; the second part has 2 digits, 0 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 54660-04:
(7*5)+(6*4)+(5*6)+(4*6)+(3*0)+(2*0)+(1*4)=117
117 % 10 = 7
So 54660-04-7 is a valid CAS Registry Number.
InChI:InChI=1/C11H15NO/c1-13-11-6-4-10(5-7-11)12-8-2-3-9-12/h4-7H,2-3,8-9H2,1H3

54660-04-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-(4-Methoxyphenyl)pyrrolidine

1.2 Other means of identification

Product number -
Other names N-p-anisidylpyrrolidine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:54660-04-7 SDS

54660-04-7Relevant articles and documents

peri-Xanthenoxanthene (PXX): a Versatile Organic Photocatalyst in Organic Synthesis

Pezzetta, Cristofer,Folli, Andrea,Matuszewska, Oliwia,Murphy, Damien,Davidson, Robert W. M.,Bonifazi, Davide

supporting information, p. 4740 - 4753 (2021/04/09)

Recent years have witnessed a continuous development of photocatalysts to satisfy the growing demand of photophysical and redox properties in photoredox catalysis, with complex structures or alternative strategies devised to access highly reducing or oxidising systems. We report herein the use of peri-xanthenoxanthene (PXX), a simple and inexpensive dye, as an efficient photocatalyst. Its highly reducing excited state allows activation of a wide range of substrates, thus triggering useful radical reactions. Benchmark transformations such as the addition of organic radicals, generated by photoreduction of organic halides, to radical traps are initially demonstrated. More complex dual catalytic manifolds are also shown to be accessible: the β-arylation of cyclic ketones is successful when using a secondary amine as organocatalyst, while cross-coupling reactions of aryl halides with amines and thiols are obtained when using a Ni co-catalyst. Application to the efficient two-step synthesis of the expensive fluoro-tetrahydro-1H-pyrido[4,3-b]indole, a crucial synthetic intermediate for the investigational drug setipiprant, has been also demonstrated. (Figure presented.).

Dehydrogenation/(3+2) Cycloaddition of Saturated Aza-Heterocycles via Merging Organic Photoredox and Lewis Acid Catalysis

Xiao, Teng-Fei,Zhang, Yi-Fan,Hou, Wen-Tao,Yan, Pen-Ji,Hai, Jun,Xu, Peng-Fei,Xu, Guo-Qiang

supporting information, p. 8942 - 8946 (2021/11/24)

Herein, we report a photoinduced dehydrogenation/(3+2) cycloaddition reaction by merging organic photoredox and Lewis acid catalysis, providing a straightforward and efficient approach for directly installing a benzofuran skeleton on the saturated aza-heterocycles. In this protocol, we also describe a novel organic photocatalyst (t-Bu-DCQ) with the advantages of a wider redox potential, easy synthesis, and a low price. Furthermore, the stepwise activation mechanism of dual C(sp3)-H bonds was demonstrated by a series of experimental and computational studies.

Product selective reaction controlled by the combination of palladium nanoparticles, continuous microwave irradiation, and a co-existing solid; ligand-free Buchwald-Hartwig aminationvs.aryne amination

Akiyama, Toshiki,Arai, Masayoshi,Arisawa, Mitsuhiro,Haneoka, Hitoshi,Harada, Kazuo,Murai, Kenichi,Murakami, Yosuke,Ohki, Yuuta,Ohta, Ryousuke,Sako, Makoto,Sirimangkalakitti, Natchanun,Suzuki, Takeyuki,Takahashi, Naoyuki,Takehara, Tsunayoshi,Yamada, Makito

supporting information, p. 8131 - 8137 (2021/10/29)

We have developed a continuous microwave irradiation-assisted Buchwald-Hartwig amination using our original Pd nanoparticle catalyst with a copper plate as a co-existing metal solid. In this methodology, a microwave-controlled product selectivity was achieved between Buchwald-Hartwig amination and aryne amination performed under strongly basic conditions and at a high reaction temperature, because a polar chemical species such as Ar-Pd-halogen might be activated selectively by microwave radiation. Moreover, our catalyst could be used repeatedly over 10 times, and the amount of Pd leaching could be suppressed to a low level.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 54660-04-7