Welcome to LookChem.com Sign In|Join Free

CAS

  • or

579-71-5

Post Buying Request

579-71-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

579-71-5 Usage

General Description

1-Nitro-2-Vinyl-Benzene, also known as alpha-nitrostyrene, is a chemical compound with the molecular formula C8H7NO2. It is a nitroalkene that contains both a nitro group and a vinyl group. The compound is mainly used as an intermediate in the synthesis of pharmaceuticals, dyes, and other organic compounds. It is a yellow liquid at room temperature and has a strong odor. It is considered to be toxic and poses health hazards if inhaled, ingested, or in contact with the skin. Additionally, it is a flammable liquid and should be handled with caution.

Check Digit Verification of cas no

The CAS Registry Mumber 579-71-5 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,7 and 9 respectively; the second part has 2 digits, 7 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 579-71:
(5*5)+(4*7)+(3*9)+(2*7)+(1*1)=95
95 % 10 = 5
So 579-71-5 is a valid CAS Registry Number.

579-71-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-ethenyl-2-nitrobenzene

1.2 Other means of identification

Product number -
Other names 2-vinylnitrobenzene

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:579-71-5 SDS

579-71-5Relevant articles and documents

In-situ facile synthesis novel N-doped thin graphene layer encapsulated Pd@N/C catalyst for semi-hydrogenation of alkynes

Liu, Jianguo,Lin, Shanshan,Sun, Jiangming,Ma, Longlong

, p. 553 - 560 (2021/12/03)

Transition metal-catalyzed semi-hydrogenation of alkynes has become one of the most popular methods for alkene synthesis. Specifically, the noble metal Pd, Rh, and Ru-based heterogeneous catalysts have been widely studied and utilized in both academia and industry. But the supported noble metal catalysts are generally suffering from leaching or aggregation during harsh reaction conditions, which resulting low catalytic reactivity and stability. Herein, we reported the facile synthesis of nitrogen doped graphene encapsulated Pd catalyst and its application in the chemo-selective semi-hydrogenation of alkynes. The graphene layer served as “bulletproof” over the active Pd Nano metal species, which was confirmed by X-ray and TEM analysis, enhanced the catalytic stability during the reaction conditions. The optimized prepared Pd@N/C catalyst showed excellent efficiency in semi-hydrogenation of phenylacetylene and other types of alkynes with un-functionalized or functionalized substituents, including the hydrogenation sensitive functional groups (NO2, ester, and halogen).

Regioselective Radical Arene Amination for the Concise Synthesis ofortho-Phenylenediamines

Gillespie, James E.,Morrill, Charlotte,Phipps, Robert J.

supporting information, p. 9355 - 9360 (2021/07/19)

The formation of arene C-N bonds directly from C-H bonds is of great importance and there has been rapid recent development of methods for achieving this through radical mechanisms, often involving reactiveN-centered radicals. A major challenge associated with these advances is that of regiocontrol, with mixtures of regioisomeric products obtained in most protocols, limiting broader utility. We have designed a system that utilizes attractive noncovalent interactions between an anionic substrate and an incoming radical cation in order to guide the latter to the areneorthoposition. The anionic substrate takes the form of a sulfamate-protected aniline and telescoped cleavage of the sulfamate group after amination leads directly toortho-phenylenediamines, key building blocks for a range of medicinally relevant diazoles. Our method can deliver both free amines and monoalkyl amines allowing access to unsymmetrical, selectively monoalkylated benzimidazoles and benzotriazoles. As well as providing concise access to valuableortho-phenylenediamines, this work demonstrates the potential for utilizing noncovalent interactions to control positional selectivity in radical reactions.

Exploring the Potential of 2-(2-Nitrophenyl)ethyl-Caged N-Hydroxysulfonamides for the Photoactivated Release of Nitroxyl (HNO)

Bharadwaj, Vinay,Brasch, Nicola E.,Rahman, Mohammad S.,Sampson, Paul,Seed, Alexander J.

, p. 16448 - 16463 (2021/12/06)

The emergence of nitroxyl (HNO) as a biological signaling molecule is attracting increasing attention. HNO-based prodrugs show considerable potential in treating congestive heart failure, with HNO reacting rapidly with metal centers and protein-bound and free thiols. A new class of 2-(2-nitrophenyl)ethyl (2-NPE)-photocaged N-hydroxysulfonamides has been developed, and the mechanisms of photodecomposition have been investigated. Three photodecomposition pathways are observed: The desired concomitant C-O/N-S bond cleavage to generate HNO, sulfinate, and 2-nitrostyrene, C-O bond cleavage to give the parent sulfohydroxamic acid and 2-nitrostyrene, and O-N bond cleavage to release a sulfonamide and 2-nitrophenylacetaldehyde. Laser flash photolysis experiments provide support for a Norrish type II mechanism involving 1,5-hydrogen atom abstraction to generate an aci-nitro species. A mechanism is proposed in which the (Z)-aci-nitro intermediate undergoes either C-O bond cleavage to release RSO2NHO(H), concerted C-O/N-S bond cleavage to generate sulfinate and HNO, or isomerization to the (E)-isomer prior to O-N bond cleavage. The pKa of the N(H) of the N-hydroxysulfonamide plays a key role in determining whether C-O or concerted C-O/N-S bond cleavage occurs. Deprotonating this site favors the desired C-O/N-S bond cleavage at the expense of an increased level of undesired O-N bond cleavage. Triplet state quenchers have no effect on the observed photoproducts.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 579-71-5