Welcome to LookChem.com Sign In|Join Free

CAS

  • or

585-88-6

Post Buying Request

585-88-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • Hot sale!! Sweetner Maltitol Crystalline CAS No.: 585-88-6 Food Additives Maltose

    Cas No: 585-88-6

  • USD $ 600.0-700.0 / Kilogram

  • 1 Kilogram

  • 1 Metric Ton/Day

  • Kono Chem Co.,Ltd
  • Contact Supplier

585-88-6 Usage

Description

Maltitol is a-D-glucopyranosyl-1.4-glucitol. The solubility in water is approximately 1,750 g/L at room temperature. Maltitol is stable under the common processing conditions of foods. In addition to dry maltitol several types of syrups are available.Maltitol is, depending on the concentration, approximately 90 % as sweet as sucrose and noncariogenic.In the European Union, maltitol is approved as E 965 for a large number of food applications. It is GRAS in the United States and also approved in many other countries.

Chemical Properties

Different sources of media describe the Chemical Properties of 585-88-6 differently. You can refer to the following data:
1. Maltitol is a-D-glucopyranosyl-1.4-glucitol. The solubility in water is approximately 1,750 g/L at room temperature. Maltitol is stable under the common processing conditions of foods. In addition to dry maltitol several types of syrups are available. Maltitol is, depending on the concentration, approximately 90 % as sweet as sucrose and noncariogenic . In the European Union, maltitol is approved as E 965 for a large number of food applications. It is GRAS in the United States and also approved in many other countries.
2. White or almost white, crystalline powder
3. Maltitol occurs as a white, odorless, sweet, anhydrous crystalline powder. It is a disaccharide consisting of one glucose unit linked with one sorbitol unit via an α-(1→4) bond. The crystal structure is orthorhombic.
4. Maltitol (ο-α-D-glucopyranosyl-(l-4)-sorbitol) is a disaccharide sugar alcohol derived from maltose by hydrogenation. On a commercial scale, maltitol is produced by hydrogenation of corn syrup with high maltose content that is prepared by enzymatic hydrolysis of starch. After purification and concentration of the hydrogenated syrup ("hydrogenated glucose syrup"), a crystalline product with a maltitol content of between 90 and 99% and small amounts of sorbitol and hydrogenated trisaccharides are obtained. Pure maltitol is about 0.8 times as sweet as sucrose. In vitro experiments with enzyme preparations, homogenates of the intestinal mucosa, and everted intestinal sacs have demonstrated that maltitol may be hydrolyzed to glucose and sorbitol (the former is absorbed and the latter is incompletely absorbed and is subject to microbial fermentation in the gut). The hydrolysis of maltitol proceeds at a slower rate than that of sucrose but faster than that of isomalt or lactitol. To determine the extent to which maltitol is hydrolyzed under in vivo conditions, gnotobiotic ratswere given doses of 1.5 g maltitol or maltose. Analysis of residual test substance in the gastrointestinal tract 60 to 120 minutes after dosing demonstrated that 69% of the maltitol and 99% of the maltose was hydrolyzed in the small intestine. In a study with germfree rats, 84% of an ingested maltitol dose disappeared from the gastrointestinal tract within 24 hr. Streptococcus mutans, Actinomyces viscosus, and some species of Lactobacillus ferment maltitol, but S. sanguis and S. mitior do not. Maltitol (10% solution) does not lower plaque pH below 5.7 in humans tested by plaque telemetry.

Uses

Different sources of media describe the Uses of 585-88-6 differently. You can refer to the following data:
1. Maltitol is a polyhydric alcohol (polyol) produced by hydrogenation of maltose. it is approximately 90% as sweet as sucrose, has good stability, and is nonhygroscopic. uses include chewing gum, dry nut bakery products, and chocolate.
2. Maltol is a flavor enhancer used as a synthetic flavoring substance, the function of which is related to ethyl . It occurs naturally in chicory, cocoa, coffee, and cereals. It does not contribute a flavor of its own, but modifies the inherent flavors. As compared to ethyl , it is one-half to one-sixth as effective. It is less soluble, having a solubility of 1 g in 82 ml of water at 25°c. It has a melting range of 160–164°c. It is used to enhance the flavor and aroma of fruit, vanilla, and chocolate flavored foods and beverages. It is also used in beverages and desserts with a typical usage range of 10–200 ppm.

Definition

ChEBI: An alpha-D-glucoside consisting of D-glucitol having an alpha-D-glucosyl residue attached at the 4-position. Used as a sugar substitute.

Production Methods

Different sources of media describe the Production Methods of 585-88-6 differently. You can refer to the following data:
1. Maltitol is produced by chemical hydrogenation of maltose, which can be obtained by enzymatic degradation of starch under conditions similar to those used for other starch hydrolysates such as glucose. The Starting material can be the different commercially available starches including corn, potato, and others. A partially degraded starch, which can be obtained by treatment with diluted hydrochloric or sulphuric acid and subsequent neutralization or with heat-stable a-amylase, is then subjected to enzyme treatment for further degradation to maltose-rich products.Enzymes used for maltose production are b-amylases, fungal a-amylases, a-1.6- glucosidases, maltogenic amylases, and debranching enzymes, preferably with high temperature optimum.
2. Maltitol is obtained from hydrogenated maltose syrup. Starch is hydrolyzed to yield a high-concentration maltose syrup, which is hydrogenated with a catalyst. After purification and concentration, the syrup is crystallized.

Biotechnological Production

Maltitol is produced by chemical hydrogenation of maltose, which can be obtained by enzymatic degradation of starch under conditions similar to those used for other starch hydrolysates such as glucose. The Starting material can be the different commercially available starches including corn, potato, and others. A partially degraded starch, which can be obtained by treatment with diluted hydrochloric or sulphuric acid and subsequent neutralization or with heat-stable a-amylase, is then subjected to enzyme treatment for further degradation to maltose-rich products. Enzymes used for maltose production are b-amylases, fungal a-amylases, a-1.6- glucosidases, maltogenic amylases, and debranching enzymes, preferably with high temperature optimum. Examples can be found in patent applications for processes for production of maltose and maltitol.

General Description

Maltitol is a low-caloric artificial sweetener, consisting of a sugar alcohol (polyol),

Flammability and Explosibility

Notclassified

Pharmaceutical Applications

Maltitol is widely used in the pharmaceutical industry in the formulation of oral dosage forms. It is a noncariogenic bulk sweetener, approximately as sweet as sucrose, well adapted as a diluent for different oral dosage forms, wet granulation, and sugarfree hard coating.

Biochem/physiol Actions

Sugar substitute with a weak genotoxic effect.

Safety

Maltitol is used in oral pharmaceutical formulations, confectionery, and food products, and is considered to be noncariogenic. It is generally regarded as a nontoxic, nonallergenic, and nonirritant material. Digestion of maltitol follows two different metabolic pathways: absorption in the small intestine and fermentation in the large intestine (colon). These two metabolic pathways must thus be considered when evaluating the energy value. The hydrolysis of maltitol in the small intestine releases sorbitol and glucose. Glucose is actively transported and rapidly absorbed, whereas sorbitol absorption is passive. The nonabsorbed sorbitol and nonhydrolyzed maltitol are fermented by the microflora in the colon. The relative importance of the two absorption pathways depends on numerous individual factors and is related to the quantity of maltitol ingested. Excessive oral consumption (>50 g daily) may cause flatulence and diarrhea. Maltitol exhibits a low glycemic index and can therefore, under medical supervision, have a place in the diet of diabetic patients. The intake of maltitol must be taken into account for the calculation of the daily glucidic allowance. The WHO, in considering the safety of maltitol, did not set a value for the acceptable daily intake since the levels used in food to achieve a desired effect were not considered a hazard to health.

storage

Maltitol has good thermal and chemical stability. When it is heated at temperatures above 200°C, decomposition begins (depending on time, temperature, and other prevailing conditions). Maltitol does not undergo browning reactions with amino acids, and absorbs atmospheric moisture only at relative humidities of 89% and above, at 20°C.

Regulatory Status

GRAS listed. Accepted for use as a food additive in Europe. Included in oral pharmaceutical formulations. Included in the Canadian List of Acceptable Non-medicinal Ingredients.

Check Digit Verification of cas no

The CAS Registry Mumber 585-88-6 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,8 and 5 respectively; the second part has 2 digits, 8 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 585-88:
(5*5)+(4*8)+(3*5)+(2*8)+(1*8)=96
96 % 10 = 6
So 585-88-6 is a valid CAS Registry Number.
InChI:InChI=1/C12H24O11/c13-1-4(16)7(18)11(5(17)2-14)23-12-10(21)9(20)8(19)6(3-15)22-12/h4-21H,1-3H2/t4-,5+,6-,7-,8+,9+,10-,11+,12+/m1/s1

585-88-6 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Sigma

  • (M8892)  Maltitol  ≥98%

  • 585-88-6

  • M8892-25G

  • 1,351.35CNY

  • Detail
  • Sigma

  • (M8892)  Maltitol  ≥98%

  • 585-88-6

  • M8892-100G

  • 3,421.08CNY

  • Detail

585-88-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name maltitol

1.2 Other means of identification

Product number -
Other names maltit

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Food additives
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:585-88-6 SDS

585-88-6Synthetic route

A

meso-erythritol
909878-64-4

meso-erythritol

B

D-Arabitol
488-82-4

D-Arabitol

C

D-sorbitol
50-70-4

D-sorbitol

D

α-D-Glcp-(1->3)-D-arabinitol
122795-46-4

α-D-Glcp-(1->3)-D-arabinitol

E

α-D-Glcp-(1->2)-D-erythritol
63699-83-2

α-D-Glcp-(1->2)-D-erythritol

F

MALTITOL
585-88-6

MALTITOL

Conditions
ConditionsYield
With dihydrogen peroxide; copper(II) sulfate In various solvent(s) for 24h; Ambient temperature; reactivity with Fenton reagent compared to other 1->4 and 1->6 disaccharides;
acetic anhydride
108-24-7

acetic anhydride

MALTITOL
585-88-6

MALTITOL

C28H40O19

C28H40O19

Conditions
ConditionsYield
With iodine at 50℃; for 0.166667h; Microwave irradiation;93%
acetic anhydride
108-24-7

acetic anhydride

MALTITOL
585-88-6

MALTITOL

O1,O2,O3,O5,O6-pentaacetyl-O4-(tetra-O-acetyl-α-D-glucopyranosyl)-D-glucitol
41897-24-9

O1,O2,O3,O5,O6-pentaacetyl-O4-(tetra-O-acetyl-α-D-glucopyranosyl)-D-glucitol

Conditions
ConditionsYield
With sodium acetate
dimethyl sulfate
77-78-1

dimethyl sulfate

MALTITOL
585-88-6

MALTITOL

methyl iodide
74-88-4

methyl iodide

per-O-methylated maltitol
29923-18-0

per-O-methylated maltitol

Conditions
ConditionsYield
ueber mehrere Stufen;
MALTITOL
585-88-6

MALTITOL

A

4-{5-[3,4-dihydroxy-6-methyl-5-(4,5,6-trihydroxy-3-hydroxymethyl-cyclohex-2-enylamino)-tetrahydro-pyran-2-yloxy]-3,4-dihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy}-hexane-1,2,3,5,6-pentaol

4-{5-[3,4-dihydroxy-6-methyl-5-(4,5,6-trihydroxy-3-hydroxymethyl-cyclohex-2-enylamino)-tetrahydro-pyran-2-yloxy]-3,4-dihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy}-hexane-1,2,3,5,6-pentaol

B

4-(6-{5-[3,4-dihydroxy-6-methyl-5-(4,5,6-trihydroxy-3-hydroxymethyl-cyclohex-2-enylamino)-tetrahydro-pyran-2-yloxy]-3,4-dihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxymethyl}-3,4,5-trihydroxy-tetrahydro-pyran-2-yloxy)-hexane-1,2,3,5,6-pentaol

4-(6-{5-[3,4-dihydroxy-6-methyl-5-(4,5,6-trihydroxy-3-hydroxymethyl-cyclohex-2-enylamino)-tetrahydro-pyran-2-yloxy]-3,4-dihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxymethyl}-3,4,5-trihydroxy-tetrahydro-pyran-2-yloxy)-hexane-1,2,3,5,6-pentaol

Conditions
ConditionsYield
With Bacillus stearothermophilus maltogenic amylase In water at 55℃; for 24h; Product distribution; sodium citrate buffer (pH 6.0);
With Bacillus stearothermophilus maltogenic amylase In water at 55℃; for 24h; sodium citrate buffer (pH 6.0); Yield given; Yields of byproduct given;
MALTITOL
585-88-6

MALTITOL

Sucrose
57-50-1

Sucrose

A

α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→4)-α-D-sorbitol
109785-33-3

α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→4)-α-D-sorbitol

B

α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→4)-α-D-sorbitol
25466-16-4

α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→4)-α-D-sorbitol

Conditions
ConditionsYield
With amylosucrase from Neisseria polysaccharea at 30℃; for 24h; Enzymatic reaction;
MALTITOL
585-88-6

MALTITOL

methyl salicylate
119-36-8

methyl salicylate

C19H28O13

C19H28O13

Conditions
ConditionsYield
With potassium carbonate In N,N-dimethyl-formamide at 90 - 110℃; under 125 - 155 Torr; for 4h; Inert atmosphere;1.4 g

585-88-6Relevant articles and documents

Hollow ni-p amorphous alloy nanospheres: An efficient catalyst for sugars hydrogenation to polyols

Yong, Yang,Huajun, Gu,Qingxiao, Zhang,Fang, Zhang,Hui, Li

, p. 282 - 290 (2020/04/27)

In this paper, hollow Ni ? P nanospheres (NSs) are prepared through Ni electroless plating on the Au-activated silica NSs externally covered by aminopropyl moieties, followed by removing the silica template with sodium hydroxide. With various characterizations, the resulting hollow Ni ? P NSs are identified to be amorphous alloy. During liquid-phase hydrogenation of sugars to sugar alcohols, the hollow Ni ? P amorphous alloy NSs delivered much superior catalytic performances to the commercial Raney Ni catalyst, showing a good potential in practical applications. Of particular interest is the unique hollow chamber structure of the hollow Ni ? P amorphous alloy NSs, which allows for improving catalytic activity and durability relative to those associated with the dense Ni ? P amorphous alloy NSs. This work demonstrated that such hollow Ni materials with nanoporous chamber structure displayed advantages such as easy experimental handling and high accessibility for the reactants in liquid-phase reaction, more Ni active sites, as well as the existence of more electron-enriched inner surface, which is essential to provide highly efficient catalysts for some reactions.

RECTANGULAR PARALLELEPIPEDAL MALTITOL

-

Page/Page column 7, (2009/07/25)

The invention concerns maltitol crystals, characterized in that they have a rectangular parallelepipedal shape and have a length to width dimensional ratio in the range 1.8 to 5.3, preferably 3±0.7, and a process for producing them.

Method of preparing lacitol monohydrate and dihydrate

-

, (2008/06/13)

The invention relates to the new product lactitol monohydrate and to a method for the production of crystalline lactitol. The crystalline lactitol monohydrate can be obtained bij seeding an aqueous lactitol solution of a special concentration under special conditions causing the lactitol monohydrate to crystallize and recovering the product. From the mother liquor a further amount of lactitol dihydrate can be recovered. Crystalline lactitol dihydrate can be obtained using different special conditions. Lactitolmonohydrate can further be obtained by mixing one part bij weight of an aqueous lactitol solution of a suited concentration with 1 tot 3 parts bij weight of methanol or ethanol and cooling the mixture to 15° tot 25° C.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 585-88-6