Welcome to LookChem.com Sign In|Join Free

CAS

  • or

587-88-2

Post Buying Request

587-88-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

587-88-2 Usage

General Description

4-Fluorophenylacetic acid ethyl ester, also known as ethyl 4-fluorophenylacetate, is a chemical compound with the molecular formula C10H11FO2. It is a colorless liquid that is commonly used as an intermediate in the synthesis of pharmaceuticals and agrochemicals. 4-FLUOROPHENYLACETIC ACID ETHYL ESTER is of interest due to its potential pharmacological and biological activities, and it is often used as a building block in the creation of more complex organic compounds. It is an ester derivative of 4-fluorophenylacetic acid, which is known for its analgesic and anti-inflammatory properties. Overall, 4-fluorophenylacetic acid ethyl ester is an important chemical for the development of various pharmaceutical and agricultural products.

Check Digit Verification of cas no

The CAS Registry Mumber 587-88-2 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,8 and 7 respectively; the second part has 2 digits, 8 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 587-88:
(5*5)+(4*8)+(3*7)+(2*8)+(1*8)=102
102 % 10 = 2
So 587-88-2 is a valid CAS Registry Number.
InChI:InChI=1/C10H11FO2/c1-2-13-10(12)7-8-3-5-9(11)6-4-8/h3-6H,2,7H2,1H3

587-88-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-Fluorophenylacetic Acid Ethyl Ester

1.2 Other means of identification

Product number -
Other names ethyl 2-(4-fluorophenyl)acetate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:587-88-2 SDS

587-88-2Relevant articles and documents

Copper-Catalyzed Ullmann-Type Coupling and Decarboxylation Cascade of Arylhalides with Malonates to Access α-Aryl Esters

Cheng, Fei,Chen, Tao,Huang, Yin-Qiu,Li, Jia-Wei,Zhou, Chen,Xiao, Xiao,Chen, Fen-Er

supporting information, p. 115 - 120 (2022/01/04)

We have developed a high-efficiency and practical Cu-catalyzed cross-coupling to directly construct versatile α-aryl-esters by utilizing readily available aryl bromides (or chlorides) and malonates. These gram-scale approaches occur with turnovers of up to 1560 and are smoothly conducted by the usage of a low catalyst loading, a new available ligand, and a green solvent. A variety of functional groups are tolerated, and the application occurs with α-aryl-esters to access nonsteroidal anti-inflammatory drugs (NSAIDs) on the gram scale.

Expedient discovery for novel antifungal leads: 1,3,4-Oxadiazole derivatives bearing a quinazolin-4(3H)-one fragment

Chai, Jianqi,Chen, Min,Jin, Fei,Kong, Xiangyi,Wang, Xiaobin,Xue, Wei,Yang, Chunlong

, (2021/08/03)

Developing novel fungicide candidates are intensively promoted by the rapid emergences of resistant fungi that outbreak on agricultural production. Aiming to discovery novel antifungal leads, a series of 1,3,4-oxadiazole derivatives bearing a quinazolin-4(3H)-one fragment were constructed for evaluating their inhibition effects against phytopathogenic fungi in vitro and in vivo. Systematically structural optimizations generated the bioactive molecule I32 that was identified as a promising inhibitor against Rhizoctonia solani with the in vivo preventative effect of 58.63% at 200 μg/mL. The observations that were captured by scanning electron microscopy and transmission electron microscopy demonstrated that the bioactive molecule I32 could induce the sprawling growth of hyphae, the local shrinkage and rupture on hyphal surfaces, the extreme swelling of vacuoles, the striking distortions on cell walls, and the reduction of mitochondria numbers. The above results provided an indispensable complement for the discovery of antifungal lead bearing a quinazolin-4(3H)-one and 1,3,4-oxadiazole fragment.

2-(Halogenated Phenyl) acetamides and propanamides as potent TRPV1 antagonists

Ann, Jihyae,Bahrenberg, Gregor,Blumberg, Peter M.,Choi, Sun,Christoph, Thomas,Do, Nayeon,Frank-Foltyn, Robert,Ha, Heejin,Jeong, Jin Ju,Kang, Jin Mi,Kim, Changhoon,Kwon, Sun Ok,Lee, Jeewoo,Lee, Sunho,Lesch, Bernhard,Stockhausen, Hannelore,Vu, Thi Ngoc Lan,Yoon, Sanghee

, (2021/07/28)

A series consisting of 117 2-(halogenated phenyl) acetamide and propanamide analogs were investigated as TRPV1 antagonists. The structure–activity analysis targeting their three pharmacophoric regions indicated that halogenated phenyl A-region analogs exhibited a broad functional profile ranging from agonism to antagonism. Among the compounds, antagonists 28 and 92 exhibited potent antagonism toward capsaicin for hTRPV1 with Ki[CAP] = 2.6 and 6.9 nM, respectively. Further, antagonist 92 displayed promising analgesic activity in vivo in both phases of the formalin mouse pain model. A molecular modeling study of 92 indicated that the two fluoro groups in the A-region made hydrophobic interactions with the receptor.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 587-88-2