Welcome to LookChem.com Sign In|Join Free

CAS

  • or

80-15-9

Post Buying Request

80-15-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

80-15-9 Usage

Chemical Properties

Different sources of media describe the Chemical Properties of 80-15-9 differently. You can refer to the following data:
1. colourless liquid
2. Cumene hydroperoxide, an organic peroxide, is a colorless to pale yellow to green liquid. Mild odor.

Uses

Different sources of media describe the Uses of 80-15-9 differently. You can refer to the following data:
1. Production of acetone and phenol; polymerization catalyst, particularly in redox systems, used for rapid polymerization.
2. Cumene hydroperoxide is used for the manufactureof acetone and phenols; for studyingthe mechanism of NADPH-dependent lipidperoxidation; and in organic syntheses.
3. Cumene hydroperoxide is used in the preparation of polystyrene nanocapsules. It acts as a curing agent for polyester resins and as an oxidizer in organic chemical reactions. It serves as an initiator for radical polymerization especially for acrylate and methacrylate monomers. It also employed as an intermediate in the cumene process for developing phenol and acetone from benzene and propene. Further, it is used as an epoxidation reagent for allylic alcohols and fatty acid esters. In addition to this, it is also used to prepare methylstyrene, acetophenone and cumyl alcohol.

Definition

ChEBI: A peroxol that is cumene in which the alpha-hydrogen is replaced by a hydroperoxy group.

General Description

Colorless to light yellow liquid with a sharp, irritating odor. Flash point 175°F. Boils at 153°C and at 100°C at the reduced pressure of 8 mm Hg. Slightly soluble in water and denser than water. Hence sinks in water. Readily soluble in alcohol, acetone, esters, hydrocarbons, chlorinated hydrocarbons. Toxic by inhalation and skin absorption. Used in production of acetone and phenol, as a polymerization catalyst, in redox systems.

Air & Water Reactions

Slightly soluble in water and oxidized in air at approximately 130°C.

Reactivity Profile

Cumyl hydroperoxide is a strong oxidizing agent. May react explosively upon contact with reducing reagents Violent reaction occurs upon contact with copper, copper alloys, lead alloys, and mineral acids. Contact with charcoal powder gives a strong exothermic reaction. Decomposes explosively with sodium iodide [Chem. Eng. News, 1990, 68(6), 2]. Can be exploded by shock or heat [Sax, 2 ed., 1965, p. 643]. May ignite organic materials.

Hazard

Toxic by inhalation and skin absorption. Strong oxidizing agent; may ignite organic materials.

Health Hazard

Different sources of media describe the Health Hazard of 80-15-9 differently. You can refer to the following data:
1. Cumene hydroperoxide is a mild to moderateskin irritant on rabbits. Subcutaneousapplication exhibited a strong delayed reactionwith symptoms of erythema and edema(Floyd and Stockinger 1958). Strong solutionscan irritate the eyes severely, affectingthe cornea and iris.Its toxicity is comparable to that of tertbutylhydroperoxide. The toxic routes areingestion and inhalation. The acute toxicitysymptoms in rats and mice were muscleweakness, shivering, and prostration.Oral administration of 400 mg/kg resulted inexcessive urinary bleeding in rats.LD50 value, oral (rats): 382 mg/kgLD50 value, intraperitoneal (rats): 95 mg/kgAlthough cumene hydroperoxide is toxic,its pretreatment may be effective against thetoxicity of hydrogen peroxide. In humans, itstoxicity is low.Cumene hydroperoxide is mutagenic andtumorigenic (NIOSH 1986). It may causetumors at the site of application. In mice,skin and blood tumors have been observed.Its cancer-causing effects on humans are notknown.
2. Inhalation of vapor causes headache and burning throat. Liquid causes severe irritation of eyes; on skin, causes burning, throbbing sensation, irritation, and blisters. Ingestion causes irritation of mouth and stomach.

Fire Hazard

Flammable; highly reactive and oxidizing. Flash point 79°C (174.2°F); vapor density 5.2 (air= 1); autoignition temperature not reported; self-accelerating decomposition temperature 93°C (199.4°F). When exposed to heat or flame, it may ignite and/or explode. A 91–95% concentration of cumene hydroperoxide decomposes violently at 150°C (302°F) (NFPA 1986). Duswalt and Hood (1990) reported violent decomposition when this compound mixed accidentally with a 2-propanol solution of sodium iodide. It forms an explosive mixture with air. The explosive concentration range is not reported. Hazardous when mixed with easily oxidizable compounds. Fire-extinguishing agent: water from a sprinkler or fog nozzle from an explosion-resistant location.

Flammability and Explosibility

Nonflammable

Potential Exposure

Cumene hydroperoxide is used as polymerization initiator, curing agent for unsaturated polyester resins and cross-linking agent; as an intermediate in the process for making phenol plus acetone from cumene.

storage

Cumene hydroperoxide is stored in a cool,dry and well-ventilated area isolated fromother chemicals. It should be protectedagainst physical damage. It may be shippedin wooden boxes with inside glass or earthenwarecontainers or in 55-gallon metal drums.

Shipping

UN3109 Organic peroxide type F, liquid, Hazard Class: 5.2; Labels: 5.2-Organic peroxide, Technical Name Required.

Purification Methods

Purify the hydroperoxide by adding 100mL of 70% material slowly and with agitation to 300mL of 25% NaOH in water, keeping the temperature below 30o. The resulting crystals of the sodium salt are filtered off, washed twice with 25 mL portions of *benzene, then stirred with 100mL of *benzene for 20minutes. After filtering off the crystals and repeating the washing, they are suspended in 100mL of distilled water and the pH is adjusted to 7.5 by addition of 4M HCl. The free hydroperoxide is extracted into two 20mL portions of n-hexane, and the solvent is evaporated under vacuum at room temperature, the last traces being removed at 40-50o/1mm [Fordham & Williams Canad J Res 27B 943 1949]. Petroleum ether, but not diethyl ether, can be used instead of *benzene, and powdered solid CO2 can replace the 4M HCl. [Beilstein 6 IV 3221.] The material is potentially EXPLOSIVE.

Incompatibilities

The pure material is reported to explode on heating at elevated temperatures (various values given are 50°, 109, 150°C) or in strong sunlight. The substance is a strong oxidizer; reacts violently with combustible and reducing agents, causing fire and explosion hazard. Contact with metallic salts of cobalt, copper or lead alloys; mineral acids; bases; and amines may lead to violent decomposition. Vapor forms an explosive mixture with air. May accumulate static electrical charges, and may cause ignition of its vapors.

Check Digit Verification of cas no

The CAS Registry Mumber 80-15-9 includes 5 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 2 digits, 8 and 0 respectively; the second part has 2 digits, 1 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 80-15:
(4*8)+(3*0)+(2*1)+(1*5)=39
39 % 10 = 9
So 80-15-9 is a valid CAS Registry Number.
InChI:InChI=1/C9H12.H2O2/c1-8(2)9-6-4-3-5-7-9;1-2/h3-8H,1-2H3;1-2H

80-15-9 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • TCI America

  • (C2223)  Cumene Hydroperoxide (contains ca. 20% Aromatic Hydrocarbon)  

  • 80-15-9

  • 100g

  • 175.00CNY

  • Detail
  • Alfa Aesar

  • (L06866)  Cumene hydroperoxide, tech. 80%   

  • 80-15-9

  • 100g

  • 318.0CNY

  • Detail
  • Alfa Aesar

  • (L06866)  Cumene hydroperoxide, tech. 80%   

  • 80-15-9

  • 500g

  • 486.0CNY

  • Detail
  • Alfa Aesar

  • (L06866)  Cumene hydroperoxide, tech. 80%   

  • 80-15-9

  • 1000g

  • 827.0CNY

  • Detail
  • Aldrich

  • (247502)  Cumenehydroperoxide  technical grade, 80%

  • 80-15-9

  • 247502-5G

  • 146.25CNY

  • Detail
  • Aldrich

  • (247502)  Cumenehydroperoxide  technical grade, 80%

  • 80-15-9

  • 247502-100G

  • 161.46CNY

  • Detail
  • Aldrich

  • (247502)  Cumenehydroperoxide  technical grade, 80%

  • 80-15-9

  • 247502-500G

  • 485.55CNY

  • Detail

80-15-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name cumene hydroperoxide

1.2 Other means of identification

Product number -
Other names Hydroperoxide, 1-methyl-1-phenylethyl

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:80-15-9 SDS

80-15-9Relevant articles and documents

Insights into the mechanism of cumene peroxidation using supported gold and silver nanoparticles

Crites, Charles-Oneil L.,Hallett-Tapley, Geniece L.,Frenette, Mathieu,Gonzalez-Bejar, Maria,Netto-Ferreira,Scaiano

, p. 2062 - 2071 (2013)

Due to the considerable industrial implications, an in-depth study of cumene peroxidation using supported gold and silver nanoparticles was carried out to gain more insight into the mechanism of this reaction. Supported gold nanoparticles were found to ef

Oxidation of cumene in the presence of high concentrations of ascorbic acid

Smirnova,Efimova,Opeida

, p. 427 - 430 (2011)

Initiated oxidation of cumene by oxygen in the presence of ascorbic acid was studied.

A highly efficient transformation from cumene to cumyl hydroperoxide via catalytic aerobic oxidation at room temperature and investigations into solvent effects, reaction networks and mechanisms

Chen, Chong,Ji, Lijun,Lu, Qiuting,Shi, Guojun,Yuan, Enxian,Zhou, Hongyu

, (2021/12/04)

Cumyl hydroperoxide (CHP) is an important intermediate for the production of phenol/acetone, but suffers from severe reaction conditions and a low yield industrially. Here, an efficient transformation from cumene to CHP was developed. Different solvents were modulated for cumene oxidation catalyzed by NHPI/Co, and reaction network and mechanisms were investigated methodically. Hexafluoroisopropanol (HFIP) markedly promoted the transformation from cumene to CHP compared to other solvents at room temperature. A cumene conversion high up to 64.3% were observed with a selectivity to CHP of 71.7%. The solvent HFIP exhibited a significant promotion on cumene oxidation due to its contribution to the enhancement of the concentration of PINO radicals. Moreover, cumyl, cumyl oxyl and methyl radicals were captured by TEMPO and analyzed by HRMS, and the reaction paths and mechanisms from cumene to products were inferred. The preparation method discovered in this work may open an access to the production of CHP.

A new highly active La2O3-CuO-MgO catalyst for the synthesis of cumyl peroxide by catalytic oxidation

Liu, HanShuang,Wang, KaiJun,Cao, XiaoYan,Su, JiaXin,Gu, Zhenggui

, p. 12532 - 12542 (2021/04/14)

In this study, different magnesium, copper, lanthanide single metal, and composite multimetal oxide catalysts were preparedviathe coprecipitation route for the aerobic oxidation of cumene into cumene hydroperoxide. All catalysts were characterized using several analytical techniques, including XRD, SEM, EDS, FT-IR, BET, CO2-TPD, XPS, and TG-DTG. La2O3-CuO-MgO shows higher oxidation activity and yield than other catalysts. The results of XRD and SEM studies show that the copper and magnesium particles in the catalyst are smaller in size and have a distribution over a larger area due to the introduction of the lanthanum element. The CO2-TPD results confirmed that the catalyst has more alkali density and alkali strength, which can excite active sites and prevent the decomposition of cumene hydroperoxide. XPS results show that due to the promotional effect of La2O3, there are more lattice and active oxygen species in the catalyst, which can effectively utilize the lattice defects under the strong interaction between metal oxides for rapid adsorption and activation, thus improving the oxidation performance. Besides, La2O3-CuO-MgO exhibits good stability and crystalline structure due to its high oxygen mobility inhibiting coking during the cycle stability test. Finally, the possible reaction pathway and promotional mechanism on La2O3-CuO-MgO in cumene oxidation are proposed. We expect this study to shed more light on the nature of the surface-active site(s) of La2O3-CuO-MgO catalyst for cumene oxidation and the development of heterogeneous catalysts with high activity in a wide range of applications.

Hydroperoxidations of Alkenes using Cobalt Picolinate Catalysts

Peralta-Neel, Zulema,Woerpel

supporting information, p. 5002 - 5006 (2021/06/30)

Hydroperoxides were synthesized in one step from various alkenes using Co(pic)2as the catalyst with molecular oxygen and tetramethyldisiloxane (TMDSO). The hydration product could be obtained using a modified catalyst, Co(3-mepic)2, with molecular oxygen and phenylsilane. Formation of hydroperoxides occurred through a rapid Co-O bond metathesis of a peroxycobalt compound with isopropanol.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 80-15-9