90-99-3Relevant articles and documents
Metal-free iodine-promoted direct synthesis of unsymmetrical triarylmethanes
Gu, Ying-Chun,Huang, Jie,Wu, Run-Shi,Xu, Da-Zhen,Yang, Qi,Yu, Ya-Qin
, p. 5519 - 5525 (2020/04/17)
A highly efficient strategy to synthesize completely unsymmetrical triarylmethanes promoted by iodine under metal-free conditions has been successfully developed. Three different aryl groups were introduced into triarylmethanes in a one-pot reaction from inexpensive and readily available salicylaldehydes, arylboronic acids and arenes via o-QM intermediates generated in situ, delivering a wide range of unsymmetrical triarylmethanes bearing various functional groups in good yields with excellent chemoselectivity.
Ferric chloride–catalyzed deoxygenative chlorination of carbonyl compounds: A comparison of chlorodimethylsilane and dichloromethylsilane system
Xing, Bing-Han,Zhao, Xuan-Xuan,Qin, Yu-Jun,Zhang, Pu,Guo, Zhi-Xin
, p. 667 - 675 (2020/05/22)
Deoxygenative chlorination of carbonyl compounds using the HMe2SiCl/FeCl3/EtOAc and HMeSiCl2/FeCl3/EtOAc systems has been systemically investigated. The HMe2SiCl-FeCl3 system showed the advantages of good substrate applicability, mild reaction conditions, simple operation, low cost, and easy availability of raw materials. Also, it provided a simple and efficient synthesis route for carbonyl deoxychlorination via a one-pot method. Using the HMeSiCl2/FeCl3/EtOAc system, the β-methylchalcone derivative could be obtained in good yields in addition to obtaining the chlorinated compound. Finally, two plausible reaction routes were proposed to describe the formation of the chlorinated compound and the β-methylchalcone derivative.
Synthesis and evaluation of potent and selective MGL inhibitors as a glaucoma treatment
Alapafuja, Shakiru O.,Malamas, Michael S.,Shukla, Vidyanand,Zvonok, Alexander,Miller, Sally,Daily, Laura,Rajarshi, Girija,Miyabe, Christina Yume,Chandrashekhar, Honrao,Wood, JodiAnne,Tyukhtenko, Sergiy,Straiker, Alex,Makriyannis, Alexandros
, p. 55 - 64 (2018/11/23)
Monoacylglycerol lipase (MGL) inhibition provides a potential treatment approach to glaucoma through the regulation of ocular 2-arachidonoylglycerol (2-AG) levels and the activation of CB1 receptors. Herein, we report the discovery of new series of carbamates as highly potent and selective MGL inhibitors. The new inhibitors showed potent nanomolar inhibitory activity against recombinant human and purified rat MGL, were selective (>1000-fold) against serine hydrolases FAAH and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Protein-based 1H NMR experiments indicated that inhibitor 2 rapidly formed a covalent adduct with MGL with a residence time of about 6 h. This interconversion process “intrinsic reversibility” was exploited by modifications of the ligand's size (length and bulkiness) to generate analogs with “tunable’ adduct residence time (τ). Inhibitor 2 was evaluated in a normotensive murine model for assessing intraocular pressure (IOP), which could lead to glaucoma, a major cause of blindness. Inhibitor 2 was found to decrease ocular pressure by ~4.5 mmHg in a sustained manner for at least 12 h after a single ocular application, underscoring the potential for topically-administered MGL inhibitors as a novel therapeutic target for the treatment of glaucoma.