Welcome to LookChem.com Sign In|Join Free

CAS

  • or

932-92-3

Post Buying Request

932-92-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

932-92-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 932-92-3 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 9,3 and 2 respectively; the second part has 2 digits, 9 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 932-92:
(5*9)+(4*3)+(3*2)+(2*9)+(1*2)=83
83 % 10 = 3
So 932-92-3 is a valid CAS Registry Number.
InChI:InChI=1/C8H16O/c1-2-9-8-6-4-3-5-7-8/h8H,2-7H2,1H3

932-92-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name Cyclohexane, ethoxy-

1.2 Other means of identification

Product number -
Other names Hexahydrophenetole

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:932-92-3 SDS

932-92-3Relevant articles and documents

Dehydrogenative ester synthesis from enol ethers and water with a ruthenium complex catalyzing two reactions in synergy

Ben-David, Yehoshoa,Diskin-Posner, Yael,Kar, Sayan,Luo, Jie,Milstein, David,Rauch, Michael

supporting information, p. 1481 - 1487 (2022/03/07)

We report the dehydrogenative synthesis of esters from enol ethers using water as the formal oxidant, catalyzed by a newly developed ruthenium acridine-based PNP(Ph)-type complex. Mechanistic experiments and density functional theory (DFT) studies suggest that an inner-sphere stepwise coupled reaction pathway is operational instead of a more intuitive outer-sphere tandem hydration-dehydrogenation pathway.

Selective hydrogenation of lignin-derived compounds under mild conditions

Chen, Lu,Van Muyden, Antoine P.,Cui, Xinjiang,Laurenczy, Gabor,Dyson, Paul J.

, p. 3069 - 3073 (2020/06/17)

A key challenge in the production of lignin-derived chemicals is to reduce the energy intensive processes used in their production. Here, we show that well-defined Rh nanoparticles dispersed in sub-micrometer size carbon hollow spheres, are able to hydrogenate lignin derived products under mild conditions (30 °C, 5 bar H2), in water. The optimum catalyst exhibits excellent selectivity and activity in the conversion of phenol to cyclohexanol and other related substrates including aryl ethers.

Ruthenium Nanoparticles Stabilized in Cross-Linked Dendrimer Matrices: Hydrogenation of Phenols in Aqueous Media

Maximov, Anton,Zolotukhina, Anna,Murzin, Vadim,Karakhanov, Edward,Rosenberg, Edward

, p. 1197 - 1210 (2015/04/14)

Novel catalysts consisting of ruthenium nanoparticles encapsulated in cross-linked matrices based on the poly(propylene imine) dendrimers of the 1st and 3rd generations have been synthesized with a narrow particle size distribution (3.8 and 1.0 nm, respectively). The resulting materials showed high activity for the hydrogenation of phenols in aqueous media (specific catalytic activity reached turnover frequencies of 2975h-1 with respect to hydrogen uptake). It has been shown that the use of water as a solvent leads to a 1.5 to 50-fold increase in the reaction rate depending upon the nature of the substrate. It has been established that unlike the traditional heterogeneous catalysts based on ruthenium, during the hydrogenation of dihydroxybenzenes, the hydrogenation rate decreases in the order: resorcinol>hydroquinoneacatechol. The maximum specific activity for resorcinol was a turnover frequency of 243150h-1 with respect to hydrogen uptake. The catalyst based on the dendrimer of the 3rd generation containing finer particles has significantly inferior activity to the catalyst based on the dendrimer of the 1st generation by virtue of steric factors, as well as the need for prereduction of the ruthenium oxide contained on the surface. These catalysts showed resistance to metal leaching and may be reused several times without loss of activity.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 932-92-3