Welcome to LookChem.com Sign In|Join Free

CAS

  • or
cyclohexanamine is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

157973-60-9 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 157973-60-9 Structure
  • Basic information

    1. Product Name: cyclohexanamine
    2. Synonyms: CYCLOHEXANAMINE;Glipizide EP Impurity B(cyclohexanamine)
    3. CAS NO:157973-60-9
    4. Molecular Formula: C6H13N
    5. Molecular Weight: 99.17
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 157973-60-9.mol
  • Chemical Properties

    1. Melting Point: N/A
    2. Boiling Point: N/A
    3. Flash Point: N/A
    4. Appearance: /
    5. Density: N/A
    6. Refractive Index: N/A
    7. Storage Temp.: N/A
    8. Solubility: N/A
    9. CAS DataBase Reference: cyclohexanamine(CAS DataBase Reference)
    10. NIST Chemistry Reference: cyclohexanamine(157973-60-9)
    11. EPA Substance Registry System: cyclohexanamine(157973-60-9)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 157973-60-9(Hazardous Substances Data)

157973-60-9 Usage

Synthesis Reference(s)

Journal of the American Chemical Society, 114, p. 5904, 1992 DOI: 10.1021/ja00040a088Tetrahedron Letters, 26, p. 6413, 1985 DOI: 10.1016/S0040-4039(00)99014-2The Journal of Organic Chemistry, 34, p. 1817, 1969 DOI: 10.1021/jo01258a062

Check Digit Verification of cas no

The CAS Registry Mumber 157973-60-9 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,5,7,9,7 and 3 respectively; the second part has 2 digits, 6 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 157973-60:
(8*1)+(7*5)+(6*7)+(5*9)+(4*7)+(3*3)+(2*6)+(1*0)=179
179 % 10 = 9
So 157973-60-9 is a valid CAS Registry Number.

157973-60-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name Cyclohexanamine

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:157973-60-9 SDS

157973-60-9Relevant articles and documents

N,N-Chelate nickel(II) complexes bearing Schiff base ligands as efficient hydrogenation catalysts for amine synthesis

Xu, Mengyin,Wang, Yang,Zhou, Yifeng,Yao, Zi-Jian

, (2021/12/09)

Five N, N-chelate nickel (II) complexes bearing N-(2-pyridinylmethylene)-benzylamine ligands with different substituent groups were synthesized in good yields. The nickel complexes exhibited prominent catalytic efficiency toward amine synthesis from nitro compounds by using NaBH4 or H2 as hydrogen source through two catalytic systems. Various amines with different substituents were obtained in moderate to excellent yields. All substrates with electron-donating and electron-withdrawing properties were tolerated in the two reduction systems. Given the efficient catalytic activity, broad substance scope, and mild reduction conditions, the nickel catalysts have potential applications in industrial production.

RhNPs supported onN-functionalized mesoporous silica: effect on catalyst stabilization and catalytic activity

Pulido-Díaz, Israel T.,Serrano-Maldonado, Alejandro,López-Suárez, Carlos César,Méndez-Ocampo, Pedro A.,Portales-Martínez, Benjamín,Gutiérrez-Alejandre, Aída,Salas-Martin, Karla P.,Guerrero-Ríos, Itzel

, p. 3289 - 3298 (2021/03/16)

Amine and nicotinamide groups grafted on ordered mesoporous silica (OMS) were investigated as stabilizers for RhNPs used as catalysts in the hydrogenation of several substrates, including carbonyl and aryl groups. Supported RhNPs on functionalized OMS were prepared by controlled decomposition of an organometallic precursor of rhodium under dihydrogen pressure. The resulting materials were characterized thoroughly by spectroscopic and physical techniques (FTIR, TGA, BET, SEM, TEM, EDX, XPS) to confirm the formation of spherical rhodium nanoparticles with a narrow size distribution supported on the silica surface. The use of nicotinamide functionalized OMS as a support afforded small RhNPs (2.3 ± 0.3 nm), and their size and shape were maintained after the catalyzed acetophenone hydrogenation. In contrast, amine-functionalized OMS formed RhNP aggregates after the catalytic reaction. The supported RhNPs could selectively reduce alkenyl, carbonyl, aryl and heteroaryl groups and were active in the reductive amination of phenol and morpholine, using a low concentration of the precious metal (0.07-0.18 mol%).

One-pot synthesis of cyclohexylamine and: N -aryl pyrroles via hydrogenation of nitroarenes over the Pd0.5Ru0.5-PVP catalyst

Chaudhari, Chandan,Sato, Katsutoshi,Ikeda, Yasuyuki,Terada, Kenji,Abe, Naoya,Nagaoka, Katsutoshi

supporting information, p. 9743 - 9746 (2021/06/15)

The direct synthesis of cyclohexylamine via the hydrogenation of nitrobenzene over monometallic (Pd, Ru or Rh) and bimetallic (PdxRu1-x) catalysts was studied. The Pd0.5Ru0.5-PVP catalyst was the most effective catalyst for this reaction. The catalyst can be reused and applied for the synthesis of N-aryl pyrroles and quinoxalines from nitrobenzenes.

MATERIALS COMPRISING CARBON-EMBEDDED COBALT NANOPARTICLES, PROCESSES FOR THEIR MANUFACTURE, AND USE AS HETEROGENEOUS CATALYSTS

-

Page/Page column 17; 19-20, (2021/03/13)

The present invention relates to catalytically active material, comprising grains of non-graphitizing carbon with cobalt nanoparticles dispersed therein, wherein dP, the average diameter of cobalt nanoparticles in the non-graphitizing carbon grains, is in the range of 1 nm to 20 nm, D, the average distance between cobalt nanoparticles in the non-graphitizing carbon grains, is in the range of 2 nm to 150 nm, and ω, the combined total mass fraction of metal in the non-graphitizing carbon grains, is in the range of 30 wt% to 70 wt% of the total mass of the non-graphitizing carbon grains, and wherein dP, D and ω conform to the following relation: 4.5 dP / ω > D ≥ 0.25 dP / ω. The present invention, further, relates to a process for the manufacture of material according to the invention, as well as its use as a catalyst.

Self-regulated catalysis for the selective synthesis of primary amines from carbonyl compounds

Fan, Xiaomeng,Gao, Jin,Gao, Mingxia,Jia, Xiuquan,Ma, Jiping,Xu, Jie

supporting information, p. 7115 - 7121 (2021/09/28)

Most current processes for the general synthesis of primary amines by reductive amination are performed with enormously excessive amounts of hazardous ammonia. It remains unclear how catalysts should be designed to regulate amination reaction dynamics at a low ammonia-to-substrate ratio for the quantitative synthesis of primary amines from the corresponding carbonyl compounds. Herein we show a facile control of the reaction selectivity in the layered boron nitride supported ruthenium catalyzed reductive amination reaction. Specifically, locating ruthenium to the edge surface of layered boron nitride leads to an increased hydrogenation activity owing to the enhanced interfacial electronic effects between ruthenium and the edge surface of boron nitride. This enables self-accelerated reductive amination reactions which quantitatively synthesize structurally diverse primary amines by reductive amination of carbonyl compounds with twofold ammonia. This journal is

Generation of Oxidoreductases with Dual Alcohol Dehydrogenase and Amine Dehydrogenase Activity

Tseliou, Vasilis,Schilder, Don,Masman, Marcelo F.,Knaus, Tanja,Mutti, Francesco G.

supporting information, p. 3315 - 3325 (2020/12/11)

The l-lysine-?-dehydrogenase (LysEDH) from Geobacillus stearothermophilus naturally catalyzes the oxidative deamination of the ?-amino group of l-lysine. We previously engineered this enzyme to create amine dehydrogenase (AmDH) variants that possess a new hydrophobic cavity in their active site such that aromatic ketones can bind and be converted into α-chiral amines with excellent enantioselectivity. We also recently observed that LysEDH was capable of reducing aromatic aldehydes into primary alcohols. Herein, we harnessed the promiscuous alcohol dehydrogenase (ADH) activity of LysEDH to create new variants that exhibited enhanced catalytic activity for the reduction of substituted benzaldehydes and arylaliphatic aldehydes to primary alcohols. Notably, these novel engineered dehydrogenases also catalyzed the reductive amination of a variety of aldehydes and ketones with excellent enantioselectivity, thus exhibiting a dual AmDH/ADH activity. We envisioned that the catalytic bi-functionality of these enzymes could be applied for the direct conversion of alcohols into amines. As a proof-of-principle, we performed an unprecedented one-pot “hydrogen-borrowing” cascade to convert benzyl alcohol to benzylamine using a single enzyme. Conducting the same biocatalytic cascade in the presence of cofactor recycling enzymes (i.e., NADH-oxidase and formate dehydrogenase) increased the reaction yields. In summary, this work provides the first examples of enzymes showing “alcohol aminase” activity.

Biochemical and Structural Characterization of an (R)-Selective Transaminase in the Asymmetric Synthesis of Chiral Hydroxy Amines

Li, Fulong,Liang, Youxiang,Wei, Yuwen,Zheng, Yukun,Du, Yan,Yu, Huimin

supporting information, p. 4582 - 4589 (2021/08/07)

An (R)-selective transaminase RbTA with excellent stereoselectivity (>99% ee) in the asymmetric amination of hydroxy ketones was identified. Biochemical characterization showed that RbTA exhibited the highest activity toward 4-hydroxy-2-butanone among reported enzymes, and that it has broad substrate specificity, including for aliphatic, aromatic, and alicyclic ketones. Crystallization of RbTA were performed, as were molecular docking and mutagenesis studies. Residue Tyr125 plays a key role in substrate recognition by forming a hydrogen bond with hydroxy ketone. The applicability of the enzyme was determined in preparative-scale synthesis of (R)-3-amino-1-butanol, demonstrating the potential of RbTA as a green biocatalyst for production of value-added chiral hydroxy amines. This study provides an efficient tool for enzymatic synthesis of chiral hydroxy amines, as well as structural insight into substrate recognition by transaminases in the asymmetric amination of hydroxy ketones. (Figure presented.).

Synthesis of Chiral Amines via a Bi-Enzymatic Cascade Using an Ene-Reductase and Amine Dehydrogenase

Fossey-Jouenne, Aurélie,Jongkind, Ewald P. J.,Mayol, Ombeline,Paul, Caroline E.,Vergne-Vaxelaire, Carine,Zaparucha, Anne

, (2021/12/23)

Access to chiral amines with more than one stereocentre remains challenging, although an increasing number of methods are emerging. Here we developed a proof-of-concept bi-enzymatic cascade, consisting of an ene reductase and amine dehydrogenase (AmDH), to afford chiral diastereomerically enriched amines in one pot. The asymmetric reduction of unsaturated ketones and aldehydes by ene reductases from the Old Yellow Enzyme family (OYE) was adapted to reaction conditions for the reductive amination by amine dehydrogenases. By studying the substrate profiles of both reported biocatalysts, thirteen unsaturated carbonyl substrates were assayed against the best duo OYE/AmDH. Low (5 %) to high (97 %) conversion rates were obtained with enantiomeric and diastereomeric excess of up to 99 %. We expect our established bi-enzymatic cascade to allow access to chiral amines with both high enantiomeric and diastereomeric excess from varying alkene substrates depending on the combination of enzymes.

Palladium supported on magnesium hydroxyl fluoride: An effective acid catalyst for the hydrogenation of imines and N-heterocycles

Agbossou-Niedercorn, Francine,Corre, Yann,Dongare, Mohan K.,Kemnitz, Erhard,Kokane, Reshma,Michon, Christophe,Umbarkar, Shubhangi B.

supporting information, p. 19572 - 19583 (2021/11/04)

Palladium catalysts supported on acidic fluorinated magnesium hydroxide Pd/MgF2-x(OH)x were prepared through precipitation or impregnation methods. Applications to the hydrogenation of various aldimines and ketimines resulted in good catalytic activities at mild temperatures using one atmosphere of hydrogen. Quinolines, pyridines and other N-heterocycles were successfully hydrogenated at higher temperature and hydrogen pressure using low palladium loadings and without the use of any acid additive. Such reactivity trend confirmed the positive effect of the Br?nsted and Lewis acid sites from the fluorinated magnesium hydroxide support resulting in the effective pre-activation of N-heterocycle substrates and therefore in the good catalytic activity of the palladium nanoparticles during the hydrogenations. As demonstrated in the hydrogenation of imines, the catalyst was recycled up to 10 times without either loss of activity or palladium leaching. This journal is

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 157973-60-9