455-18-5Relevant articles and documents
Palladium-catalyzed synthesis of nitriles from N-phthaloyl hydrazones
Ano, Yusuke,Chatani, Naoto,Higashino, Masaya,Yamada, Yuki
supporting information, p. 3799 - 3802 (2022/04/07)
The Pd-catalyzed transformation of N-phthaloyl hydrazones into nitriles involving the cleavage of an N-N bond is reported. The use of N-heterocyclic carbene as a ligand is essential for the success of the reaction. N-Phthaloyl hydrazones prepared from aromatic aldehydes or cyclobutanones are applicable to this transformation, which gives aryl or alkenyl nitriles, respectively.
Cyanide-Free Cyanation of sp2 and sp-Carbon Atoms by an Oxazole-Based Masked CN Source Using Flow Microreactors
Sharma, Brijesh M.,Nikam, Arun V.,Lahore, Santosh,Ahn, Gwang-Noh,Kim, Dong-Pyo
supporting information, (2022/02/25)
This work reports a cyanide-free continuous-flow process for cyanation of sp2 and sp carbons to synthesize aryl, vinyl and acetylenic nitriles from (5-methyl-2-phenyloxazol-4-yl) boronic acid [OxBA] reagent as a sole source of carbon-bound mask
Synthesis, coordination and catalytic use of phosphinoferrocene ligands bearing 6-phospha-2,4,6-trioxaadamantane P-donor moieties
?těpni?ka, Petr,Císa?ová, Ivana,Horky, Filip
, (2021/11/11)
1,1’-Bis(diphenylphosphino)ferrocene (dppf) and structurally related ferrocene bis-phosphines are indispensable ligands for coordination chemistry and catalysis. This contribution focuses on the coordination behaviour and catalytic properties of two dppf congeners bearing 1,3,5,7-tetramethyl-2,4,6-trioxa-8-phosphatricyclo[3.3.1.13,7]decane-8-yl groups (CgP) as the P-donor moieties, viz. Ph2PfcCgP (1) and its semi-homologous counterpart Ph2PfcCH2CgP (2; fc = ferrocene-1,1’-diyl). In reactions with a PdCl2 source, compound 1 produced exclusively the cis-chelate complex [PdCl2(1-κ2P,P’)], while the homologated ligand 2 afforded a complex mixture of compounds which equilibrated upon heating in methanol in favour of the symmetrical dimeric complex trans-[(μ-2)PdCl2]2 as a mixture of racemic and meso isomers. Notably, in aqueous Pd-catalysed cyanation of aryl bromides and Suzuki-Miyaura-type cross-coupling of benzoyl chlorides with boronic acids producing benzophenones, catalysts generated in situ from bis-phosphine 1 and Pd(II) sources were often more active than their counterparts resulting from dppf and 2.
Cross-Coupling through Ag(I)/Ag(III) Redox Manifold
Demonti, Luca,Mézailles, Nicolas,Nebra, Noel,Saffon-Merceron, Nathalie
supporting information, p. 15396 - 15405 (2021/10/12)
In ample variety of transformations, the presence of silver as an additive or co-catalyst is believed to be innocuous for the efficiency of the operating metal catalyst. Even though Ag additives are required often as coupling partners, oxidants or halide scavengers, its role as a catalytically competent species is widely neglected in cross-coupling reactions. Most likely, this is due to the erroneously assumed incapacity of Ag to undergo 2e? redox steps. Definite proof is herein provided for the required elementary steps to accomplish the oxidative trifluoromethylation of arenes through AgI/AgIII redox catalysis (i. e. CEL coupling), namely: i) easy AgI/AgIII 2e? oxidation mediated by air; ii) bpy/phen ligation to AgIII; iii) boron-to-AgIII aryl transfer; and iv) ulterior reductive elimination of benzotrifluorides from an [aryl-AgIII-CF3] fragment. More precisely, an ultimate entry and full characterization of organosilver(III) compounds [K]+[AgIII(CF3)4]? (K-1), [(bpy)AgIII(CF3)3] (2) and [(phen)AgIII(CF3)3] (3), is described. The utility of 3 in cross-coupling has been showcased unambiguously, and a large variety of arylboron compounds was trifluoromethylated via [AgIII(aryl)(CF3)3]? intermediates. This work breaks with old stereotypes and misconceptions regarding the inability of Ag to undergo cross-coupling by itself.
Hydrosilylative reduction of primary amides to primary amines catalyzed by a terminal [Ni-OH] complex
Bera, Jitendra K.,Pandey, Pragati
supporting information, p. 9204 - 9207 (2021/09/20)
A terminal [Ni-OH] complex1, supported by triflamide-functionalized NHC ligands, catalyzes the hydrosilylative reduction of a range of primary amides into primary amines in good to excellent yields under base-free conditions with key functional group tolerance. Catalyst1is also effective for the reduction of a variety of tertiary and secondary amides. In contrast to literature reports, the reactivity of1towards amide reduction follows an inverse trend,i.e., 1° amide > 3° amide > 2° amide. The reaction does not follow a usual dehydration pathway.
Development and Molecular Understanding of a Pd-Catalyzed Cyanation of Aryl Boronic Acids Enabled by High-Throughput Experimentation and Data Analysis
De Jesus Silva, Jordan,Bartalucci, Niccolò,Jelier, Benson,Grosslight, Samantha,Gensch, Tobias,Schünemann, Claas,Müller, Bernd,Kamer, Paul C. J.,Copéret, Christophe,Sigman, Matthew S.,Togni, Antonio
, (2021/11/10)
A synthetic method for the palladium-catalyzed cyanation of aryl boronic acids using bench stable and non-toxic N-cyanosuccinimide has been developed. High-throughput experimentation facilitated the screen of 90 different ligands and the resultant statistical data analysis identified that ligand σ-donation, π-acidity and sterics are key drivers that govern yield. Categorization into three ligand groups – monophosphines, bisphosphines and miscellaneous – was performed before the analysis. For the monophosphines, the yield of the reaction increases for strong σ-donating, weak π-accepting ligands, with flexible pendant substituents. For the bisphosphines, the yield predominantly correlates with ligand lability. The applicability of the designed reaction to a wider substrate scope was investigated, showing good functional group tolerance in particular with boronic acids bearing electron-withdrawing substituents. This work outlines the development of a novel reaction, coupled with a fast and efficient workflow to gain understanding of the optimal ligand properties for the design of improved palladium cross-coupling catalysts.
Rational Design and Development of Low-Price, Scalable, Shelf-Stable and Broadly Applicable Electrophilic Sulfonium Ylide-Based Trifluoromethylating Reagents
Ge, Hangming,Ling, Yijing,Liu, Yafei,Lu, Long,Shen, Qilong
, p. 1667 - 1682 (2021/05/28)
The development of two highly reactive electrophilic trifluoromethylating reagents (trifluoromethyl)(4-nitrophenyl)bis(carbomethoxy)methylide (1g) and (trifluoromethyl)(3-chlorophenyl)bis(carbomethoxy)methylide (1j) through structure-activity study was described. Under mild conditions, reagent 1g reacted with β-ketoesters and silyl enol ethers to give α-trifluoromethylated-β-ketoesters or α-trifluoromethylated ketones in high yields. In addition, reagent 1g could serve as a trifluoromethyl radical for a variety of trifluoromethylative transformations under visible light irradiation, including radical trifluoromethylation of electron-rich indoles and pyrroles and sodium aryl sulfinates as well as trifluoromethylative difunctionalization with styrene derivatives. On the other hand, as a complimentary, under reductive coupling conditions, reagent 1j reacted with a variety of (hetero)aryl iodides for the formation of trifluoromethylated (hetero)arenes.
Copper-promoted cyanation of aryl iodides with N,N-dimethyl aminomalononitrile
Liu, Si-Zhan,Li, Jing,Xue, Cao-Gen,Xu, Xue-Tao,Lei, Lin-Sheng,Huo, Chen-Yu,Wang, Zhen,Wang, Shao-Hua
supporting information, (2021/02/01)
A copper-promoted cyanation of aryl iodides has been successfully developed by using N,N-dimethyl aminomalononitrile as the cyanide source with moderate toxicity and better stability. This reaction features broad substrate scope, excellent reaction yields, readily available catalyst, and simple reaction conditions.
Iodine Promoted Conversion of Esters to Nitriles and Ketones under Metal-Free Conditions
Xiao, Jing,Guo, Fengzhe,Li, Yinfeng,Li, Fangshao,Li, Qiang,Tang, Zi-Long
, p. 2028 - 2035 (2021/02/03)
We report a novel strategy to prepare valuable nitriles and ketones through the conversion of esters under metal-free conditions. By using the I2/PCl3 system, various substrates including aliphatic and aromatic esters could react with acetonitrile and arenes to afford the desired products in good to excellent yields. This method is compatible with a number of functional groups and provides a simple and practical approach for the synthesis of nitrile compounds and aryl ketones.