696-44-6Relevant articles and documents
CO2-tuned highly selective reduction of formamides to the corresponding methylamines
Chao, Jianbin,Guo, Zhiqiang,Pang, Tengfei,Wei, Xuehong,Xi, Chanjuan,Yan, Leilei
supporting information, p. 7534 - 7538 (2021/10/12)
We herein describe an efficient, CO2-tuned and highly selective C-O bond cleavage of N-methylated formanilides. With easy-to-handle and commercially available NaBH4 as the reductant, a variety of formanilides could be turned into the desired tertiary amines in moderate to excellent yields. The role of CO2 has been investigated in detail, and the mechanism is proposed on the basis of experiments.
Effect of the ancillary ligand in N-heterocyclic carbene iridium(III) catalyzed N-alkylation of amines with alcohols
Feng, Xinshu,Huang, Ming
, (2021/06/21)
A series of air-stable N-heterocyclic carbene (NHC) Ir(III) complexes (Ir1-6), bearing various combinations of chlorine, pyridine and NHC ligands, were assayed for the N-alkylation of amines with alcohols. It was found that Ir3, with two monodentate 1,3-bis-methyl-imidazolylidene (IMe) ligands, emerged as the most active complex. A large variety of amines and primary alcohols were efficiently converted into mono-N-alkylated amines in 53–96% yields. As a special highlight, for the challenging MeOH, selective N-monomethylation could be achieved using KOH as a base under an air atmosphere. Moreover, this catalytic system was successfully applied to the gram-scale synthesis of some valuable compounds.
Efficient methylation of anilines with methanol catalysed by cyclometalated ruthenium complexes
Piehl, Patrick,Amuso, Roberta,Spannenberg, Anke,Gabriele, Bartolo,Neumann, Helfried,Beller, Matthias
, p. 2512 - 2517 (2021/04/22)
Cyclometalated ruthenium complexes4-10allow the effective methylation of anilines with methanol to selectively giveN-methylanilines. This hydrogen autotransfer procedure proceeds under mild conditions (60 °C) in a practical manner (NaOH as base). Mechanistic investigations suggest an active homogenous ruthenium complex and β-hydride elimination of methanol as the rate determining step.
Novel hybrid conjugates with dual estrogen receptor α degradation and histone deacetylase inhibitory activities for breast cancer therapy
Zhao, Chenxi,Tang, Chu,Li, Changhao,Ning, Wentao,Hu, Zhiye,Xin, Lilan,Zhou, Hai-Bing,Huang, Jian
, (2021/05/10)
Hormone therapy targeting estrogen receptors is widely used clinically for the treatment of breast cancer, such as tamoxifen, but most of them are partial agonists, which can cause serious side effects after long-term use. The use of selective estrogen receptor down-regulators (SERDs) may be an effective alternative to breast cancer therapy by directly degrading ERα protein to shut down ERα signaling. However, the solely clinically used SERD fulvestrant, is low orally bioavailable and requires intravenous injection, which severely limits its clinical application. On the other hand, double- or multi-target conjugates, which are able to synergize antitumor activity by different pathways, thus may enhance therapeutic effect in comparison with single targeted therapy. In this study, we designed and synthesized a series of novel dual-functional conjugates targeting both ERα degradation and histone deacetylase inhibiton by combining a privileged SERD skeleton 7-oxabicyclo[2.2.1]heptane sulfonamide (OBHSA) with a histone deacetylase inhibitor side chain. We found that substituents on both the sulfonamide nitrogen and phenyl group of OBHSA unit had significant effect on biological activities. Among them, conjugate 16i with N-methyl and naphthyl groups exhibited potent antiproliferative activity against MCF-7 cells, and excellent ERα degradation activity and HDACs inhibitory ability. A further molecular docking study indicated the interaction patterns of these conjugates with ERα, which may provide guidance to design novel SERDs or PROTAC-like SERDs for breast cancer therapy.
Method for realizing N-alkylation by using alcohols as carbon source under photocatalysis
-
Paragraph 0048-0057, (2021/03/13)
The invention discloses a method for realizing N-alkylation by using alcohols as a carbon source under photocatalysis, and belongs to the technical field of catalytic synthesis. Alcohol, a substrate raw material and a catalyst are placed in a reaction device, ultraviolet and/or visible light irradiation is carried out in an inert atmosphere, after the irradiation is finished, solid-liquid separation is carried out to remove the catalyst, and an N-alkylation product can be obtained through extraction, distillation and purification, wherein the substrate raw material comprises any one of an amine compound, an aromatic nitro compound or an aromatic nitrile compound, the alcohol comprises any one or more of soluble primary alcohols, and the catalyst is metal oxide/titanium dioxide or metal sulfide/titanium dioxide. The method is simple and easy to operate, can be used for efficient photocatalysis one-pot multi-step hydrogenation N-alkylation reaction, and is mild in reaction condition, high in chemical selectivity of N-alkylamine, good in catalyst stability and easy to recycle.
Additive-freeN-methylation of amines with methanol over supported iridium catalyst
Liu, Xiang,Loh, Teck-Peng,Qiang, Wenwen,Wang, Jing,Ye, Sen,Zhu, Longfei
, p. 3364 - 3375 (2021/06/06)
An efficient and versatile zinc oxide-supported iridium (Ir/ZnO) catalyst was developed to catalyze the additive-freeN-methylation of amines with methanol. Mechanistic studies suggested that the high catalytic reactivity is rooted in the small sizes (1.4 nm) of Ir nanoparticles and the high ratio (93%) of oxidized iridium species (IrOx, Ir3+and Ir4+) on the catalyst. Moreover, the delicate cooperation between the IrOxand ZnO support also promoted its high reactivity. The selectivity of this catalyticN-methylation was controllable between dimethylation and monomethylation by carefully tuning the catalyst loading and reaction solvent. Specifically, neat methanol with high catalyst loading (2 mol% Ir) favored the formation ofN,N-dimethylated amine, while the mesitylene/methanol mixture with low catalyst loading (0.5 mol% Ir) was prone to producing mono-N-methylated amines. An environmentally benign continuous flow system with a recycled mode was also developed for the efficient production ofN-methylated amines. With optimal flow rates and amine concentrations, a variety ofN-methylamines were produced with good to excellent yields in this Ir/ZnO-based flow system, providing a starting point for the clean and efficient production ofN-methylamines with this cost-effective chemical process.
Synthesis of N-Alkyl Anilines from Arenes via Iron-Promoted Aromatic C-H Amination
Falk, Eric,Gasser, Valentina C. M.,Morandi, Bill
supporting information, p. 1422 - 1426 (2021/03/08)
We report both an intermolecular C-H amination of arenes to access N-methylanilines and an intramolecular variant for the synthesis of tetrahydroquinolines. A newly developed, highly electrophilic aminating reagent was key for the direct synthesis of unprotected N-methylanilines from simple arenes. The reactions display a broad functional group tolerance and employ catalytic amounts of a benign iron salt under mild reaction conditions.
Synthesis of: N -methylated amines from acyl azides using methanol
Chakrabarti, Kaushik,Dutta, Kuheli,Kundu, Sabuj
, p. 5891 - 5896 (2020/08/21)
The transformation of acyl azide derivatives into N-methylamines was developed using methanol as the C1 source via the one-pot Curtius rearrangement and borrowing hydrogen methodology. Following this protocol, various functionalised N-methylated amines were synthesized using the (NNN)Ru(ii) complex from carboxylic acids via an acyl azide intermediate. Several kinetic studies and DFT calculations were carried out to support the mechanism and also to determine the role of the Ru(ii) complex and base in this transformation.
Selective mono-N-methylation of nitroarenes with methanol catalyzed by atomically dispersed NHC-Ir solid assemblies
Chen, Jiangbo,Chen, Zhe-Ning,Tu, Tao,Wang, Jiaquan,Wen, Daheng,Wu, Jiajie,Xu, Xin,Zheng, Qingshu
, p. 337 - 344 (2020/07/03)
A series of N-heterocyclic carbene-iridium (NHC-Ir) coordination assemblies based on bis-pyrenoimidazolium salts are prepared, and shown to function as efficient solid molecular catalysts in selective mono-N-methylation of nitroarenes with methanol under mild conditions. The atomically dispersed active Ir(I) centers and the large π-conjugation rings endow the solid catalysts with an exceptionally high activity and selectivity for a broad substrate scope. Such solid NHC-Ir coordination assemblies are robust, which can be easily recovered and reused more than 10 runs without significant loss of their catalytic activity and selectivity. When combined with a subsequent formylation using the same solid catalysts under ambient conditions, this novel protocol can afford diverse formamides in excellent yields, further highlighting the applicability of the present solid catalysts for an efficient diversification of nitroarenes to a broad number of functional amines.
Manganese-Catalyzed One-Pot Conversion of Nitroarenes into N-Methylarylamines Using Methanol
Mast, Nicolas,Morrill, Louis C.,Reed-Berendt, Benjamin G.
supporting information, (2020/03/03)
A manganese-catalyzed one-pot conversion of nitroarenes into N-methylarylamines has been developed. This transfer hydrogenation method employs a well-defined bench stable Mn PN3P pincer precatalyst in combination with methanol as both the reductant and the C1 source. A selection of commercially available nitroarenes was converted into N-methylarylamines in synthetically useful yields.