7387-69-1Relevant articles and documents
Direct palladium-catalyzed ortho-arylation of benzylamines
Lazareva, Anna,Daugulis, Olafs
, p. 5211 - 5213 (2006)
Unsubstituted benzylamines and N-methylbenzylamine can be ortho-arylated under palladium catalysis at 130 °C. The reactions require the presence of trifluoroacetic acid and silver acetate.
AMINE-BORANES AS BIFUNCTIONAL REAGENTS FOR DIRECT AMIDATION OF CARBOXYLIC ACIDS
-
Paragraph 0008-0009; 0063-0064, (2022/03/04)
The present invention generally relates to a process for selective and direct activation and subsequent amidation of aliphatic and aromatic carboxylic acids to afford an amide R3CONR1R2. That the process is capable of delivering gaseous or low-boiling point amines provides a major advantage over existing methodologies, which involves an intermediate of triacyloxyborane-amine complex [(R3CO2)3—B—NHR1R2]. This procedure readily produces primary, secondary, and tertiary amides, and is compatible with the chirality of the acid and amine involved. The preparation of known pharmaceutical molecules and intermediates has also been demonstrated.
Novel hybrid conjugates with dual estrogen receptor α degradation and histone deacetylase inhibitory activities for breast cancer therapy
Zhao, Chenxi,Tang, Chu,Li, Changhao,Ning, Wentao,Hu, Zhiye,Xin, Lilan,Zhou, Hai-Bing,Huang, Jian
, (2021/05/10)
Hormone therapy targeting estrogen receptors is widely used clinically for the treatment of breast cancer, such as tamoxifen, but most of them are partial agonists, which can cause serious side effects after long-term use. The use of selective estrogen receptor down-regulators (SERDs) may be an effective alternative to breast cancer therapy by directly degrading ERα protein to shut down ERα signaling. However, the solely clinically used SERD fulvestrant, is low orally bioavailable and requires intravenous injection, which severely limits its clinical application. On the other hand, double- or multi-target conjugates, which are able to synergize antitumor activity by different pathways, thus may enhance therapeutic effect in comparison with single targeted therapy. In this study, we designed and synthesized a series of novel dual-functional conjugates targeting both ERα degradation and histone deacetylase inhibiton by combining a privileged SERD skeleton 7-oxabicyclo[2.2.1]heptane sulfonamide (OBHSA) with a histone deacetylase inhibitor side chain. We found that substituents on both the sulfonamide nitrogen and phenyl group of OBHSA unit had significant effect on biological activities. Among them, conjugate 16i with N-methyl and naphthyl groups exhibited potent antiproliferative activity against MCF-7 cells, and excellent ERα degradation activity and HDACs inhibitory ability. A further molecular docking study indicated the interaction patterns of these conjugates with ERα, which may provide guidance to design novel SERDs or PROTAC-like SERDs for breast cancer therapy.
A CO2-Catalyzed Transamidation Reaction
Yang, Yang,Liu, Jian,Kamounah, Fadhil S.,Ciancaleoni, Gianluca,Lee, Ji-Woong
, p. 16867 - 16881 (2021/11/18)
Transamidation reactions are often mediated by reactive substrates in the presence of overstoichiometric activating reagents and/or transition metal catalysts. Here we report the use of CO2as a traceless catalyst: in the presence of catalytic amounts of CO2, transamidation reactions were accelerated with primary, secondary, and tertiary amide donors. Various amine nucleophiles including amino acid derivatives were tolerated, showcasing the utility of transamidation in peptide modification and polymer degradation (e.g., Nylon-6,6). In particular,N,O-dimethylhydroxyl amides (Weinreb amides) displayed a distinct reactivity in the CO2-catalyzed transamidation versus a N2atmosphere. Comparative Hammett studies and kinetic analysis were conducted to elucidate the catalytic activation mechanism of molecular CO2, which was supported by DFT calculations. We attributed the positive effect of CO2in the transamidation reaction to the stabilization of tetrahedral intermediates by covalent binding to the electrophilic CO2
Amine-boranes as Dual-Purpose Reagents for Direct Amidation of Carboxylic Acids
Choudhary, Shivani,Hamann, Henry J.,Ramachandran, P. Veeraraghavan
, (2020/11/13)
Amine-boranes serve as dual-purpose reagents for direct amidation, activating aliphatic and aromatic carboxylic acids and, subsequently, delivering amines to provide the corresponding amides in up to 99% yields. Delivery of gaseous or low-boiling amines as their borane complexes provides a major advantage over existing methodologies. Utilizing amine-boranes containing borane incompatible functionalities allows for the preparation of functionalized amides. An intermolecular mechanism proceeding through a triacyloxyborane-amine complex is proposed.
Graphene oxide: A convenient metal-free carbocatalyst for facilitating amidation of esters with amines
Patel, Khushbu P.,Gayakwad, Eknath M.,Shankarling, Ganapati S.
, p. 2661 - 2668 (2020/02/20)
Herein, we report a graphene oxide (GO) catalyzed condensation of non-activated esters and amines, that can enable diverse amides to be synthesized from abundant ethyl esters forming only volatile alcohol as a by-product. GO accelerates ester to amide conversion in the absence of any additives, unlike other catalysts. A wide range of ester and amine substrates are screened to yield the respective amides in good to excellent yields. The improved catalytic activity can be ascribed to the oxygenated functionalities present on the graphene oxide surface which forms H-bonding with the reactants accelerating the reaction. Improved yields and a wide range of functional group tolerance are some of the important features of the developed protocol.
Direct amidation of non-activated carboxylic acid and amine derivatives catalyzed by TiCp2Cl2
Wang, Hui,Dong, Wei,Hou, Zhipeng,Cheng, Lidan,Li, Xiufen,Huang, Longjiang
, (2020/02/15)
This paper described a mild and efficient direct amidation of non-activated carboxylic acid and amine derivatives catalyzed by TiCp2Cl2. Arylacetic acid derivatives reacted with different amines to afford the corresponding amides in good to excellent yield except of aniline. Aryl formic acids failed to react with aniline but smoothly reacted with aliphatic amines and benzylamine in moderate to good yield, fatty acids reacting with benzyl and aliphatic amines give amides in good to excellent yield. Chiral amino acids derivatives were transformed into amides without racemization in moderate yield. The possible mechanism of direct amidation catalyzed by TiCp2Cl2 was discussed. This catalytic method is very suitable for the amidation of low sterically hindered arylacetic acid, fatty acids with different low sterically hindered amines except aniline, as well as the amidation of aryl formic acid with benzyl and aliphatic amines.
Carbon-Carbon Bond Formation of Trifluoroacetyl Amides with Grignard Reagents via C(O)-CF3 Bond Cleavage
Zhu, Longzhi,Le, Liyuan,Yan, Mingpan,Au, Chak-Tong,Qiu, Renhua,Kambe, Nobuaki
, p. 5635 - 5644 (2019/05/10)
The reaction of trifluoroacetyl amides with Grignard reagent for the substitution of CF3 group with various alkyl or aryl groups is described. A variety of aryl, quinolin-8-yl, and (hetero)alkyl functional groups as well as F, Cl, and Br atoms are well tolerated. These moisture-stable and easily available trifluoroacetyl amides can be conveniently obtained and used as new versatile precursors for isocyanates. The control experiments show that the reaction proceeds via an isocyanate intermediate and/or alkoxide/amide dual anionic intermediate.
1,1-Diacyloxy-1-phenylmethanes as versatile N-acylating agents for amines
Chapman, Robert. S.L.,Tibbetts, Joshua. D.,Bull, Steven. D.
, p. 5330 - 5339 (2018/06/15)
1,1-Diacyloxy-1-phenylmethanes and 1-pivaloxy-1-acyloxy-1-phenylmethanes have been used as bench stable N-acylating reagents for primary and secondary amines and anilines under solvent-free conditions to afford their corresponding amides in good yield.
meta-Selective C?H Borylation of Benzylamine-, Phenethylamine-, and Phenylpropylamine-Derived Amides Enabled by a Single Anionic Ligand
Davis, Holly J.,Genov, Georgi R.,Phipps, Robert J.
supporting information, p. 13351 - 13355 (2017/10/07)
Selective functionalization at the meta position of arenes remains a significant challenge. In this work, we demonstrate that a single anionic bipyridine ligand bearing a remote sulfonate group enables selective iridium-catalyzed borylation of a range of common amine-containing aromatic molecules at the arene meta position. We propose that this selectivity is the result of a key hydrogen bonding interaction between the substrate and catalyst. The scope of this meta-selective borylation is demonstrated on amides derived from benzylamines, phenethylamines and phenylpropylamines; amine-containing building blocks of great utility in many applications.