1124-19-2Relevant articles and documents
A utility for organoleads: Selective alkyl and aryl group transfer to tin
Arias-Ugarte, Renzo N.,Pannell, Keith H.
, p. 1703 - 1708 (2018/02/09)
Me4Pb and Ph4Pb readily transfer methyl or phenyl groups to an equivalent molar ratio of tin(iv) chlorides in the order SnCl4 > MeSnCl3 > Me2SnCl2 > Me3SnCl, often in a selective manner. Me3PbCl and Ph3PbCl specifically transfer a single methyl/phenyl group under the same reaction conditions to produce recovered yields in >75%. Specific transfer of 2 methyl groups from PbMe4 can be achieved at elevated temperatures and/or a 2:1 molar ratio Pb:Sn.
Tri- and diorganostannates containing 2-(N,N-dimethylaminomethyl)phenyl ligand
?vec, Petr,?erno?ková, Eva,Padělková, Zdeňka,R??i?ka, Ale,Hole?ek, Jaroslav
, p. 2475 - 2485 (2010/11/16)
The C,N-chelated tri and diorganotin(IV) chlorides react with both protic mineral acids and carboxylic acids. The nitrogen atom of the LCN ligand (where LCN is 2-(dimethylaminomethyl)phenyl) is thus quarternized - protonated and new Sn-X bond (X = Cl, Br, I or the remainder of the starting acid used) is simultaneously formed. The set of zwitterionic tri and diorganostannates containing protonated 2-(dimethylaminomethyl)phenyl-moiety was prepared and structurally characterized by multinuclear NMR spectroscopy and XRD techniques. In all these cases, the intramolecular N-H?X bond is present in the molecule. Despite the central tin atom remains five-coordinated (except for the [HLCNH]+[(n-Bu)2SnCl(NO 3)2]-) and reveals a distorted trigonal bipyramidal geometry, the 119Sn NMR chemical shift values of these zwitterionic stannates are somewhat shifted to the higher field than corresponding starting C,N-chelated tri and diorganotin(IV) halides. Reactions of C,N-chelated organotin(IV) halides with various Lewis acids are also discussed.
αω-bis(trichlorostannyl)alkanes: Unravelling the hydrolysis pathway to organotin-oxo oligomers
Zobel, Bernhard,Duthie, Andrew,Dakternieks, Dainis,Tiekink, Edward R.T.
, p. 2820 - 2826 (2008/10/08)
New αω-bis(trichlorostannyl)alkanes, Cl3Sn(CH2)nSnCl3 [n = 3-5, 8], have been synthesized via tin-phenyl bond cleavage reactions on α,ω-bis(triphenylstannyl)alkanes, Ph3Sn(CH2)nS
Synthesis and reactivity of stannyloligosilanes, I. Stannyloligosilane chains containing SiMe2 moieties
Uhlig, Frank,Kayser, Christian,Klassen, Ralph,Hermann, Uwe,Brecker, Lothar,Schürmann, Markus,Ruhland-Senge, Karin,Englich, Ulrich
, p. 278 - 287 (2007/10/03)
Stannyloligosilanes 1 and 2 with terminal organotin groups are available by reacting alkali metal tri-or diorganostannides with α,ω-dichloro-or difluorosilanes, or by treatment of organochlorostannanes with α,ω-difluorosilanes in the presence of magnesium. Attempts to functionalize the triorganotin derivatives 2 by halogenation reagents did not result in the halogen compounds 5; instead cleavage of silicon-tin bonds is observed. In contrast, reactions of the hydridotin derivatives 1 with CHX3 (X = Cl, Br) lead to the quantitative formation of the bis(chloro-or bromostannyl)oligosilanes 5. All compounds were characterized by NMR, IR, MS and elemental analysis. In addition, the triorganotin compound 2i and the hydridotin species 1b have been characterized by X-ray crystallography.