4393-06-0Relevant articles and documents
A METHOD FOR THE SYSTEMATIC RESOLUTION OF UNBRANCHED α-ACETOXYALKYL- AND ARALKYLALDEHYDES: SYNTHESIS OF 11R AND 11S-HETE
Just, George,Luthe, Corinne,Potvin, Pierre
, p. 2285 - 2288 (1982)
It is shown that oxazolidines derived from racemic unbranched α-acetoxyaldehydes and l-ephedrine have predictable chromatographic mobilities, with the R-isomer always having a higher Rf-value.This resolution has been used to prepare 11R and 11S-HETE.
Microwave-Assisted 1,3-Dioxa-[3,3]-Sigmatropic Rearrangement of Substituted Allylic Carbamates: Application to the Synthesis of Novel 1,3-Oxazine-2,4-dione Derivatives
Bou Zeid, Samar,Eid, Samar,Najjar, Fadia,Macé, Aurélie,Rivilla, Ivan,Cossío, Fernando P.,Dorcet, Vincent,Roisnel, Thierry,Carreaux, Fran?ois
supporting information, (2021/11/22)
In a first instance, the effect of the microwave irradiation on the 1,3-Dioxa-[3,3]-sigmatropic rearrangement of aryl allylic carbamates was investigated. Under these new conditions, the reaction acceleration was clearly highlighted compared to convention
Electrochemical Nozaki-Hiyama-Kishi Coupling: Scope, Applications, and Mechanism
Baran, Phil S.,Blackmond, Donna G.,Gao, Yang,Hadt, Ryan G.,Hao, Wei,Hill, David E.,McNicholas, Brendon J.,Reisman, Sarah E.,Vantourout, Julien C.
supporting information, p. 9478 - 9488 (2021/07/19)
One of the most oft-employed methods for C-C bond formation involving the coupling of vinyl-halides with aldehydes catalyzed by Ni and Cr (Nozaki-Hiyama-Kishi, NHK) has been rendered more practical using an electroreductive manifold. Although early studies pointed to the feasibility of such a process, those precedents were never applied by others due to cumbersome setups and limited scope. Here we show that a carefully optimized electroreductive procedure can enable a more sustainable approach to NHK, even in an asymmetric fashion on highly complex medicinally relevant systems. The e-NHK can even enable non-canonical substrate classes, such as redox-active esters, to participate with low loadings of Cr when conventional chemical techniques fail. A combination of detailed kinetics, cyclic voltammetry, and in situ UV-vis spectroelectrochemistry of these processes illuminates the subtle features of this mechanistically intricate process.
Nickel-Mediated Enantiospecific Silylation via Benzylic C-OMe Bond Cleavage
Balakrishnan, Venkadesh,Murugesan, Vetrivelan,Chindan, Bincy,Rasappan, Ramesh
supporting information, p. 1333 - 1338 (2021/02/20)
Benzylic stereocenters are found in bioactive and drug molecules, as enantiopure benzylic alcohols have been used to build such a stereogenic center, but are limited to the construction of a C-C bond. Silylation of alkyl alcohols has the potential to build bioactive molecules and building blocks; however, the development of such a process is challenging and unknown. Herein, we describe an unprecedented AgF-assisted nickel catalysis in the enantiospecific silylation of benzylic ethers.
Nickel-Catalyzed C(sp3)-H Functionalization of Benzyl Nitriles: Direct Michael Addition to Terminal Vinyl Ketones
Zhang, Ninghui,Zhang, Chunli,Hu, Xiaoping,Xie, Xin,Liu, Yuanhong
supporting information, p. 6004 - 6009 (2021/07/31)
An efficient nickel(0)-catalyzed addition of benzyl nitriles to terminal vinyl ketones via C(sp3)-H functionalization has been developed. The reaction provides a novel and efficient protocol for the synthesis of α-functionalized benzyl nitriles with a wide range of structural diversity under mild reaction conditions while obviating the use of a strong base. The work might be potentially useful toward the development of an enantioselective variant using chiral nitrogen ligands.
Potassium Base-Catalyzed Michael Additions of Allylic Alcohols to α,β-Unsaturated Amides: Scope and Mechanistic Insights
Kurouchi, Hiroaki,Sai, Masahiro
supporting information, p. 3585 - 3591 (2021/06/27)
We report herein the first KHMDS-catalyzed Michael additions of allylic alcohols to α,β-unsaturated amides through allylic isomerization. The reaction proceeds smoothly in the presence of only 5 mol% of KHMDS to afford a variety of 1,5-ketoamides in high yields. Mechanistic investigations, including experimental and computational studies, reveal that the KHMDS-catalyzed in-situ generation of the enolate from the allylic alcohol through a tunneling-assisted 1,2-hydride shift is the key to the success of this transformation. (Figure presented.).
Potassium Base-Promoted Diastereoselective Synthesis of 1,3-Diols from Allylic Alcohols and Aldehydes through a Tandem Allylic-Isomerization/Aldol–Tishchenko Reaction
Sai, Masahiro
supporting information, p. 4053 - 4056 (2021/10/25)
This study reports the first base-promoted aldol–Tishchenko reactions of allylic alcohols with aldehydes initiated by allylic isomerization. The reaction enables the diastereoselective synthesis of a variety of 1,3-diols with three contiguous stereogenic centers. Unlike commonly reported systems, our method allows the use of readily available allylic alcohols as nucleophiles instead of enolizable aldehydes and ketones.
Arylboronic Acid Catalyzed C-Alkylation and Allylation Reactions Using Benzylic Alcohols
Estopi?á-Durán, Susana,McLean, Euan B.,Donnelly, Liam J.,Hockin, Bryony M.,Taylor, James E.
supporting information, p. 7547 - 7551 (2020/10/09)
The arylboronic acid catalyzed dehydrative C-alkylation of 1,3-diketones and 1,3-ketoesters using secondary benzylic alcohols as the electrophile is reported, forming new C-C bonds (19 examples, up to 98% yield) with the release of water as the only byproduct. The process is also applicable to the allylation of benzylic alcohols using allyltrimethylsilane as the nucleophile (12 examples, up to 96% yield).
Photochemical oxidation of benzylic primary and secondary alcohols utilizing air as the oxidant
Nikitas, Nikolaos F.,Tzaras, Dimitrios Ioannis,Triandafillidi, Ierasia,Kokotos, Christoforos G.
, p. 471 - 477 (2020/02/13)
A mild and green photochemical protocol for the oxidation of alcohols to aldehydes and ketones was developed. Utilizing thioxanthenone as the photocatalyst, molecular oxygen from air as the oxidant and cheap household lamps or sunlight as the light source, a variety of primary and secondary alcohols were converted into the corresponding aldehydes or ketones in low to excellent yields. The reaction mechanism was extensively studied.
Introducing aldehyde functionality to proteins using ligand-directed affinity labeling
Fung, Yi Man Eva,Huang, Yiran,Li, Xiaoyu,Peng, Jianzhao,Song, Yinan,Xiong, Feng
supporting information, p. 6134 - 6137 (2020/06/10)
Aldehyde is a versatile chemical handle for protein modification. Although many methods have been developed to label proteins with aldehyde, target-specific methods amenable to endogenous proteins are limited. Here, we report a simple affinity probe strategy to introduce aldehydes to native proteins. Notably, the probe contains a latent aldehyde functionality that is only exposed upon target binding, thereby enabling a one-pot labeling procedure.