65-45-2Relevant articles and documents
Copper-mediated α-hydroxylation of N-salicyloyl-glycine. A model for peptidyl-glycine α-amidating monooxygenase (PAM)
Capdevielle, Patrice,Maumy, Michel
, p. 3831 - 3834 (1991)
Title compound 1 is selectively hydroxytated in α position by three distinct copper- containing oxidant systems, involving dioxygen, peroxide anion or trimethylamine oxide. Trivalent copper is likely the key intermediate in this first reported model for the PHM activity of enzyme PAM.
Mg/Al mixed oxides: Heterogeneous basic catalysts for the synthesis of salicylamide from urea and phenol
Wang, Dengfeng,Zhang, Xuelan,Wei, Wei,Sun, Yuhan
, p. 159 - 162 (2012)
Several Mg/Al mixed oxides were prepared by thermal decomposition of hydrotalcites and used for the synthesis of salycilamide from urea and phenol. Their physicochemical properties were characterized by ICP, XRD, CO 2-TPD and N2 adso
Green and efficient Beckmann rearrangement by Cu(II) contained nano-silica triazine based dendrimer in water
Bahreininejad, Mohammad Hasan,Moeinpour, Farid
, p. 893 - 901 (2021/01/12)
In this research, a Cu(II) contained nano-silica triazine based dendrimer was prepared, characterized, and utilized as a retrievable catalytic system (Cu(II)-TrDen@nSiO2) for green formation of primary amides in water at room temperature. The structure of nanoparticles was fully characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetry analysis (TGA). The results revealed that the nanoparticles have spherical morphology and an average size of around 40 nm. The analysis also illustrated that the copper nanoparticles had been successfully loaded on the nitrogen-rich dendritic structure with a uniform distribution. The inductively coupled plasma analysis showed that about 0.67 mmol/g of Cu was loaded on the Cu(II)-TrDen@nSiO2 support. Mild reaction conditions, excellent yields, environment-friendly synthesis, and easily prepared starting materials are the key features of the present method. The catalyst is easily removed from the reaction media using a simple filtration and can be re-used at least five times without any considerable loss of its catalytic activity.
Efficient nitriding reagent and application thereof
-
Paragraph 0318-0320, (2021/03/31)
The invention discloses an efficient nitriding reagent and application thereof, wherein the nitriding reagent comprises nitrogen oxide, an active agent, a reducing agent and an organic solvent. By applying the nitriding reagent, nitrogen-containing compounds such as amide, nitrile and the like can be produced, and the method is simple in condition, low in waste discharge amount and simple in reaction equipment.
Arene-ruthenium(II)-phosphine complexes: Green catalysts for hydration of nitriles under mild conditions
Vyas, Komal M.,Mandal, Poulami,Singh, Rinky,Mobin, Shaikh M.,Mukhopadhyay, Suman
, (2019/12/11)
Three new arene-ruthenium(II) complexes were prepared by treating [{RuCl(μ-Cl)(η6-arene)}2] (η6-arene = p-cymene) dimer with tri(2-furyl)phosphine (PFu3) and 1,3,5-triaza-7-phosphaadamantane (PTA), respectively to obtain [RuCl2(η6-arene)PFu3] [Ru]-1, [RuCl(η6-arene)(PFu3)(PTA)]BF4 [Ru]-2 and [RuCl(η6-arene)(PFu3)2]BF4 [Ru]-3. All the complexes were structurally identified using analytical and spectroscopic methods including single-crystal X-ray studies. The effectiveness of resulting complexes as potential homogeneous catalysts for selective hydration of different nitriles into corresponding amides in aqueous medium and air atmosphere was explored. There was a remarkable difference in catalytic activity of the catalysts depending on the nature and number of phosphorus-donor ligands and sites available for catalysis. Experimental studies performed using structural analogues of efficient catalyst concluded a structural-activity relationship for the higher catalytic activity of [Ru]-1, being able to convert huge variety of aromatic, heteroaromatic and aliphatic nitriles. The use of eco-friendly water as a solvent, open atmosphere and avoidance of any organic solvent during the catalytic reactions prove the reported process to be truly green and sustainable.
Substrate Profiling of the Cobalt Nitrile Hydratase from Rhodococcus rhodochrous ATCC BAA 870
Mashweu, Adelaide R.,Chhiba‐Govindjee, Varsha P.,Bode, Moira L.,Brady, Dean
, (2020/01/13)
The aromatic substrate profile of the cobalt nitrile hydratase from Rhodococcus rhodochrous ATCC BAA 870 was evaluated against a wide range of nitrile containing compounds (>60). To determine the substrate limits of this enzyme, compounds ranging in size from small (90 Da) to large (325 Da) were evaluated. Larger compounds included those with a biaryl axis, prepared by the Suzuki coupling reaction, Morita–Baylis–Hillman adducts, heteroatomlinked diarylpyridines prepared by Buchwald–Hartwig crosscoupling reactions and imidazo[1,2a]pyridines prepared by the Groebke–Blackburn–Bienaymé multicomponent reaction. The enzyme active site was moderately accommodating, accepting almost all of the small aromatic nitriles, the diarylpyridines and most of the biaryl compounds and Morita–Baylis–Hillman products but not the Groebke–Blackburn–Bienaymé products. Nitrile conversion was influenced by steric hindrance around the cyano group, the presence of electron donating groups (e.g., methoxy) on the aromatic ring, and the overall size of the compound.
Nitromethane as a nitrogen donor in Schmidt-type formation of amides and nitriles
Jiao, Ning,Liu, Jianzhong,Qiu, Xu,Song, Song,Wei, Jialiang,Wen, Xiaojin,Zhang, Cheng,Zhang, Ziyao
supporting information, p. 281 - 285 (2020/01/28)
The Schmidt reaction has been an efficient and widely used synthetic approach to amides and nitriles since its discovery in 1923. However, its application often entails the use of volatile, potentially explosive, and highly toxic azide reagents. Here, we report a sequence whereby triflic anhydride and formic and acetic acids activate the bulk chemical nitromethane to serve as a nitrogen donor in place of azides in Schmidt-like reactions. This protocol further expands the substrate scope to alkynes and simple alkyl benzenes for the preparation of amides and nitriles.
Preparation method of aromatic amide compound
-
Paragraph 0060-0061, (2020/07/15)
The present invention provides a preparation method of an aromatic amide compound. In an organic solvent, under the effect of a catalyst, an aromatic acid compound and an amine source are subjected toa dehydration reaction to obtain the aromatic amide compound, wherein the aromatic acid compound is an aromatic acid, a substituted aromatic acid, a heterocyclic aromatic acid or a substituted heterocyclic aromatic acid; and the substituent group of amide is any substituent group of H, a C1-C8 straight-chain alkyl or branched-chain alkyl group, a benzene ring or an aromatic ring. The aromatic amide compound is an important chemical intermediate, and the synthesis method is mild in reaction condition and high in yield.
Application method of antioxidant in salicylamide synthesis process
-
Paragraph 0019-0023, (2020/08/22)
The invention discloses an application method of an antioxidant in a salicylamide synthesis process, wherein the application method comprises the steps: in the process of synthesizing salicylamide from methyl salicylate, adding the antioxidant, and after reaction is completed, carrying out after-treatment to obtain a finished product white salicylamide. The raw materials of the antioxidant are cheap and easily available; the method has the advantages of simple process, energy conservation, consumption reduction, high production safety and the like; the problem that the color of salicylamide isslightly pink in the existing industrial production is solved; the step of crude product purification is omitted; and the product quality and yield are greatly improved.
Asymmetric Hydrogenation of Cationic Intermediates for the Synthesis of Chiral N,O-Acetals
Sun, Yongjie,Zhao, Qingyang,Wang, Heng,Yang, Tilong,Wen, Jialin,Zhang, Xumu
supporting information, p. 11470 - 11477 (2020/08/10)
For over half a century, transition-metal-catalyzed homogeneous hydrogenation has been mainly focused on neutral and readily prepared unsaturated substrates. Although the addition of molecular hydrogen to C=C, C=N, and C=O bonds represents a well-studied paradigm, the asymmetric hydrogenation of cationic species remains an underdeveloped area. In this study, we were seeking a breakthrough in asymmetric hydrogenation, with cationic intermediates as targets, and thereby anticipating applying this powerful tool to the construction of challenging chiral molecules. Under acidic conditions, both N- or O-acetylsalicylamides underwent cyclization to generate cationic intermediates, which were subsequently reduced by an iridium or rhodium hydride complex. The resulting N,O-acetals were synthesized with remarkably high enantioselectivity. This catalytic strategy exhibited high efficiency (turnover number of up to 4400) and high chemoselectivity. Mechanistic studies supported the hypothesis that a cationic intermediate was formed in situ and hydrogenated afterwards. A catalytic cycle has been proposed with hydride transfer from the iridium complex to the cationic sp2 carbon atom being the rate-determining step. A steric map of the catalyst has been created to illustrate the chiral environment, and a quantitative structure–selectivity relationship analysis showed how enantiomeric induction was achieved in this chemical transformation.