Welcome to LookChem.com Sign In|Join Free

CAS

  • or

95-46-5

Post Buying Request

95-46-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

95-46-5 Usage

Chemical Properties

liquid

Uses

2-Bromotoluene was used in the synthesis of (±)-isocomene. Suzuki coupling of 2-bromotoluene with phenylboronic acid using palladium nanoparticles supported on alumina-based oxides as catalyst has been reported. 2-Bromotoluene is used in manufacturing pharmaceuticals (especially for nonsteroidal antiinflammatory drugs; Meclofenamic acid, Mefenamic acid) and other organic compounds

General Description

Clear colorless to pale beige liquid.

Air & Water Reactions

Insoluble in water.

Reactivity Profile

2-Bromotoluene reacts with strong oxidizing agents.

Fire Hazard

2-Bromotoluene is combustible.

Purification Methods

Fractionally distil it through an efficient column. It can be separated from its isomers by gas chromatography on a column of “Sil-o-cel” firebrick (30-40mesh, 80 parts) coated with 5% (20 parts) of ICI E301 con rubber with N2 carrier gas at 170o/atm and 100mL/minute and using a conductivity cell detector. [Cowley et al. J Chem Soc 1801 1959, Beilstein 5 H 304, 5 I 153, 5 II 234 5 III 704, 5 IV 825.]

Check Digit Verification of cas no

The CAS Registry Mumber 95-46-5 includes 5 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 2 digits, 9 and 5 respectively; the second part has 2 digits, 4 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 95-46:
(4*9)+(3*5)+(2*4)+(1*6)=65
65 % 10 = 5
So 95-46-5 is a valid CAS Registry Number.

95-46-5 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A12315)  2-Bromotoluene, 99%   

  • 95-46-5

  • 25g

  • 402.0CNY

  • Detail
  • Alfa Aesar

  • (A12315)  2-Bromotoluene, 99%   

  • 95-46-5

  • 100g

  • 1231.0CNY

  • Detail
  • Alfa Aesar

  • (A12315)  2-Bromotoluene, 99%   

  • 95-46-5

  • 500g

  • 4955.0CNY

  • Detail

95-46-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-Bromotoluene

1.2 Other means of identification

Product number -
Other names O-BROMOTOLUENE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:95-46-5 SDS

95-46-5Relevant articles and documents

Eco-Friendly Methodology for the Formation of Aromatic Carbon–Heteroatom Bonds by Using Green Ionic Liquids

Richards, Kenza,Petit, Eddy,Legrand, Yves-Marie,Grison, Claude

supporting information, p. 809 - 814 (2020/11/30)

A new sustainable method is reported for the formation of aromatic carbon–heteroatom bonds under solvent-free and mild conditions (no co-oxidant, no strong acid and no toxic reagents) by using a new type of green ionic liquid. The bromination of methoxy arenes was chosen as a model reaction. The reaction methodology is based on only using natural sodium bromine, which is transformed into an electrophilic brominating reagent within an ionic liquid, easily prepared from the melted salt FeCl3 hexahydrate. Bromination reactions with this in-situ-generated reagent gave good yields and excellent regioselectivity under simple and environmentally friendly conditions. To understand the unusual bromine polarity reversal of sodium bromine without any strong oxidant, the molecular structure of the reaction medium was characterised by Raman and direct infusion electrospray ionisation mass spectroscopy (ESI-MS). An extensive computational investigation using density functional theory methods was performed to describe a mechanism that suggests indirect oxidation of Br? through new iron adducts. The versatility of the methodology was successively applied to nitration and thiocyanation of methoxy arenes using KNO3 and KSCN in melted hexahydrated FeCl3.

Bipyridinium and Phenanthrolinium Dications for Metal-Free Hydrodefluorination: Distinctive Carbon-Based Reactivity

Burton, Katherine I.,Elser, Iris,Waked, Alexander E.,Wagener, Tobias,Andrews, Ryan J.,Glorius, Frank,Stephan, Douglas W.

supporting information, p. 11730 - 11737 (2021/07/16)

The development of novel Lewis acids derived from bipyridinium and phenanthrolinium dications is reported. Calculations of Hydride Ion Affinity (HIA) values indicate high carbon-based Lewis acidity at the ortho and para positions. This arises in part from extensive LUMO delocalization across the aromatic backbones. Species [C10H6R2N2CH2CH2]2+ (R=H [1 a]2+, Me [1 f]2+, tBu [1 g]2+), and [C12H4R4N2CH2CH2]2+ (R=H [2 a]2+, Me [2 b]2+) were prepared and evaluated for use in the initiation of hydrodefluorination (HDF) catalysis. Compound [2 a]2+ proved highly effective towards generating catalytically active silylium cations via Lewis acid-mediated hydride abstraction from silane. This enabled the HDF of a range of aryl- and alkyl- substituted sp3(C?F) bonds under mild conditions. The protocol was also adapted to effect the deuterodefluorination of cis-2,4,6-(CF3)3C6H9. The dications are shown to act as hydride acceptors with the isolation of neutral species C16H14N2 (3 a) and C16H10Me4N2 (3 b) and monocationic species [C14H13N2]+ ([4 a]+) and [C18H21N2]+ ([4 b]+). Experimental and computational data provide further support that the dications are initiators in the generation of silylium cations.

Preparation method of monobrominated aromatic hydrocarbon compound

-

Paragraph 0055-0067, (2020/11/23)

The invention discloses a preparation method of a monobrominated aromatic hydrocarbon compound, which comprises the following steps: by using an aromatic hydrocarbon compound as a raw material, wateras a solvent and liquid bromine as a bromine source, reacting at room temperature for 4.5 hours, and after the reaction is finished, carrying out aftertreatment on the obtained reaction mixed solutionto obtain the monobrominated target product. According to the method, a high-selectivity bromination method is realized on the aromatic hydrocarbon compound under the action of water, and the monobrominated aromatic hydrocarbon compound is prepared. The method is high in reaction applicability, mild in condition, high in yield, green and environment-friendly.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 95-46-5