95-46-5Relevant articles and documents
Mixed Micelles of Surface Active Ionic Liquid (SAIL)–Octylphenol Ethoxylate: A Novel Reaction Medium for Selective Oxidation of Toluene to Benzaldehyde
Deore, Tushar S.,Sadgar, Amid L.,Jayaram, Radha V.
, p. 185 - 190 (2020/07/30)
Ionic liquids have been found to be suitable alternatives to volatile organic solvents in chemical transformation. Through a proper choice of cations and anions, the properties of an ionic liquid can be tuned so that it resembles an amphiphile. Such specially designed molecules are known as surface-active ionic liquids (SAIL). Like conventional surfactants, SAIL also form aggregates in an aqueous medium. Studies show that the mixing of SAIL with conventional surfactants leads to synergistic micellization. However, very few reports are available on the application of such systems as reaction media. Present study focuses on the application of mixed micelles of 1-tetradecyl-3-methylimidazol-1-ium bromide, ([C14mim]Br) with nonionic surfactant, Octylphenol ethoxylate with 10 moles of ethylene oxide (OPE-10). Enhanced solubilization and selective catalytic oxidation of toluene using hydrogen peroxide as an oxidant and tungstic acid as a catalyst have been studied in detail using this system.
Eco-Friendly Methodology for the Formation of Aromatic Carbon–Heteroatom Bonds by Using Green Ionic Liquids
Richards, Kenza,Petit, Eddy,Legrand, Yves-Marie,Grison, Claude
supporting information, p. 809 - 814 (2020/11/30)
A new sustainable method is reported for the formation of aromatic carbon–heteroatom bonds under solvent-free and mild conditions (no co-oxidant, no strong acid and no toxic reagents) by using a new type of green ionic liquid. The bromination of methoxy arenes was chosen as a model reaction. The reaction methodology is based on only using natural sodium bromine, which is transformed into an electrophilic brominating reagent within an ionic liquid, easily prepared from the melted salt FeCl3 hexahydrate. Bromination reactions with this in-situ-generated reagent gave good yields and excellent regioselectivity under simple and environmentally friendly conditions. To understand the unusual bromine polarity reversal of sodium bromine without any strong oxidant, the molecular structure of the reaction medium was characterised by Raman and direct infusion electrospray ionisation mass spectroscopy (ESI-MS). An extensive computational investigation using density functional theory methods was performed to describe a mechanism that suggests indirect oxidation of Br? through new iron adducts. The versatility of the methodology was successively applied to nitration and thiocyanation of methoxy arenes using KNO3 and KSCN in melted hexahydrated FeCl3.
Bipyridinium and Phenanthrolinium Dications for Metal-Free Hydrodefluorination: Distinctive Carbon-Based Reactivity
Burton, Katherine I.,Elser, Iris,Waked, Alexander E.,Wagener, Tobias,Andrews, Ryan J.,Glorius, Frank,Stephan, Douglas W.
supporting information, p. 11730 - 11737 (2021/07/16)
The development of novel Lewis acids derived from bipyridinium and phenanthrolinium dications is reported. Calculations of Hydride Ion Affinity (HIA) values indicate high carbon-based Lewis acidity at the ortho and para positions. This arises in part from extensive LUMO delocalization across the aromatic backbones. Species [C10H6R2N2CH2CH2]2+ (R=H [1 a]2+, Me [1 f]2+, tBu [1 g]2+), and [C12H4R4N2CH2CH2]2+ (R=H [2 a]2+, Me [2 b]2+) were prepared and evaluated for use in the initiation of hydrodefluorination (HDF) catalysis. Compound [2 a]2+ proved highly effective towards generating catalytically active silylium cations via Lewis acid-mediated hydride abstraction from silane. This enabled the HDF of a range of aryl- and alkyl- substituted sp3(C?F) bonds under mild conditions. The protocol was also adapted to effect the deuterodefluorination of cis-2,4,6-(CF3)3C6H9. The dications are shown to act as hydride acceptors with the isolation of neutral species C16H14N2 (3 a) and C16H10Me4N2 (3 b) and monocationic species [C14H13N2]+ ([4 a]+) and [C18H21N2]+ ([4 b]+). Experimental and computational data provide further support that the dications are initiators in the generation of silylium cations.
Preparation method of monobrominated aromatic hydrocarbon compound
-
Paragraph 0055-0067, (2020/11/23)
The invention discloses a preparation method of a monobrominated aromatic hydrocarbon compound, which comprises the following steps: by using an aromatic hydrocarbon compound as a raw material, wateras a solvent and liquid bromine as a bromine source, reacting at room temperature for 4.5 hours, and after the reaction is finished, carrying out aftertreatment on the obtained reaction mixed solutionto obtain the monobrominated target product. According to the method, a high-selectivity bromination method is realized on the aromatic hydrocarbon compound under the action of water, and the monobrominated aromatic hydrocarbon compound is prepared. The method is high in reaction applicability, mild in condition, high in yield, green and environment-friendly.
Induced Fitting and Polarization of a Bromine Molecule in an Electrophilic Inorganic Molecular Cavity and Its Bromination Reactivity
Hayashi, Yoshihito,Inada, Yasuhiro,Katayama, Misaki,Kikukawa, Yuji,Kitajima, Hiromasa,Seto, Kensuke,Watanabe, Daiki,Yamashita, Shohei
supporting information, p. 14399 - 14403 (2020/07/13)
Dodecavanadate, [V12O32]4? (V12), possesses a 4.4 ? cavity entrance, and the cavity shows unique electrophilicity. Owing to the high polarizability, Br2 was inserted into V12, inducing the inversion of one of the VO5 square pyramids to form [V12O32(Br2)]4? (V12(Br2)). The inserted Br2 molecule was polarized and showed a peak at 185 cm?1 in the IR spectrum. The reaction of V12(Br2) and toluene yielded bromination of toluene at the ring, showing the electrophilicity of the inserted Br2 molecule. Compound V12(Br2) also reacted with propane, n-butane, and n-pentane to give brominated alkanes. Bromination with V12(Br2) showed high selectivity for 3-bromopentane (64 %) among the monobromopentane products and preferred threo isomer among 2-,3-dibromobutane and 2,3-dibromopenane. The unique inorganic cavity traps Br2 leading the polarization of the diatomic molecule. Owing to its new reaction field, the trapped Br2 shows selective functionalization of alkanes.
Metal- and base-free synthesis of aryl bromides from arylhydrazines
Phuc Tran, Dat,Nomoto, Akihiro,Mita, Soichiro,Dong, Chun-ping,Kodama, Shintaro,Mizuno, Takumi,Ogawa, Akiya
supporting information, (2020/05/08)
An efficient method was developed to synthesize brominated aromatic compounds from arylhydrazine hydrochlorides by using BBr3 in DMSO/CPME (cyclopentyl methyl ether) under air at 80 °C for 1 h without the use of bases or metal catalysts. In particular, this method could be carried out satisfactorily using electron-withdrawing groups to afford aryl bromides in a moderate to excellent yields.
Mild and Regioselective Bromination of Phenols with TMSBr
Ma, Xiantao,Yu, Jing,Jiang, Mengyuan,Wang, Mengyu,Tang, Lin,Wei, Mengmeng,Zhou, Qiuju
supporting information, p. 4593 - 4596 (2019/07/05)
In this work, an unexpected promoting effect of by-product thioether was observed, leading to a mild and regioselective bromination of phenols with TMSBr. This method can tolerate a series of functional groups such as the reactive methoxyl, amide, fluoro, chloro, bromo, aldehyde, ketone and ester groups, and has the potential to recycle the by-product thioether and isolate the desired product under column chromatography-free conditions. Mechanism studies revealed that O–H···S hydrogen bond may be formed between phenol and by-product thioether. Possibly owing to the steric hindrance effect from by-product thioether, the electrophilic bromination at para-position of phenols is much favorable.
Preparation methods of 3,6-dichloro-2-bromotoluene and dicamba
-
Paragraph 0033; 0041; 0042; 0046; 0047; 0054; 0055, (2019/06/05)
The invention provides a preparation method of dicamba. The preparation method comprises the following steps: S1) in the presence of a catalyst, 2-bromotoluene is subjected to a chlorination reactionin chlorosulfonic acid or concentrated sulfuric acid, and 3,6-dichloro-2-bromotoluene is obtained; S2), 3,6-dichloro-2-bromotoluene is subjected to an oxidation reaction and a methoxylation reaction in sequence, and dicamba is obtained. Compared with the prior art, 3,6-dichloro-2-bromotoluene is obtained from 2-bromotoluene after the directional chlorination reaction, and dicamba can be obtained by the oxidation reaction and the methoxylation reaction. The methods have the advantages of easily available raw materials, low comprehensive cost, high methoxylation reaction selectivity, high totalyield, stable product quality and simple process, and facilitate industrial implementation.
Ni-Catalyzed Reductive Cyanation of Aryl Halides and Phenol Derivatives via Transnitrilation
Mills, L. Reginald,Graham, Joshua M.,Patel, Purvish,Rousseaux, Sophie A. L.
supporting information, p. 19257 - 19262 (2019/12/02)
Herein, we report a Ni-catalyzed reductive coupling for the synthesis of benzonitriles from aryl (pseudo)halides and an electrophilic cyanating reagent, 2-methyl-2-phenyl malononitrile (MPMN). MPMN is a bench-stable, carbon-bound electrophilic CN reagent that does not release cyanide under the reaction conditions. A variety of medicinally relevant benzonitriles can be made in good yields. Addition of NaBr to the reaction mixture allows for the use of more challenging aryl electrophiles such as aryl chlorides, tosylates, and triflates. Mechanistic investigations suggest that NaBr plays a role in facilitating oxidative addition with these substrates.
Regioselective Halogenation of Arenes and Heterocycles in Hexafluoroisopropanol
Tang, Ren-Jin,Milcent, Thierry,Crousse, Benoit
, p. 930 - 938 (2018/01/28)
Regioselective halogenation of arenes and heterocycles with N-halosuccinimides in fluorinated alcohols is disclosed. Under mild condition reactions, a wide diversity of halogenated arenes are obtained in good yields with high regioselectivity. Additionally, the versatility of the method is demonstrated by the development of one-pot sequential halogenation and halogenation-Suzuki cross-coupling reactions.