A R T I C L E S
Sugiyama et al.
Figure 1. Iminocyclitols. 1, DMDP; 2, â-hexosaminidase inhibitor; 3, fagomine; 4, DNJ.
Figure 2. Aldolase-catalyzed synthesis of iminocyclitols. (A) Original synthesis with D-fructose-1,6-diphosphate(FDP) aldolase; (B) synthesis with D-fructose-
6-phosphate aldolase (FSA).
activity relationships for iminocyclitol glycosidase inhibitors can
be difficult to elucidate, making rational inhibitor design a
frustrating exercise.7 This is well illustrated by the recent
observation by Fleet and co-workers that the L-enantiomers of
rationally designed D-iminocyclitols can be much more potent
inhibitors of the D-sugar processing enzymes.8 Considering this
situation, there is a need for facile methods of accessing a broad
range of iminocyclitol structures in sufficient quantities to allow
for synthesis of analogues, so that structurally diverse libraries
can be screened for inhibitory activity.
Among the reported methods of preparing iminocyclitols,9
chemoenzymatic synthesis using aldolases provides rapid access
to multiple scaffolds in a highly selective manner.10a-c The
dihydroxyacetone phosphate (DHAP)-dependent aldolases cata-
lyze the addition of DHAP to acceptor aldehydes, and are
capable of accepting aldehydes containing azide or N-Cbz-amine
substitutions, thus providing the corresponding azido- or N-Cbz-
amino polyhydroxy ketones. After removal of the phosphate
group with phosphatase, reduction of the azide or deprotection
of N-Cbz group followed by intramolecular reductive amination
affords a series of iminocyclitols (Figure 2A).10 However,
DHAP-dependent aldolases possess the drawback of strict donor
substrate specificity toward DHAP, and nonphosphorylated
dihydroxyacetone (DHA) cannot be used. The high cost and
instability of DHAP, as well as the requirement of a phosphatase
to remove the phosphate ester, reduce the practicality of the
process. Significant effort has been expended toward a more
practical access to DHAP,11 but it remains difficult. A more
desirable solution would be the elimination of the requirement
for DHAP, and facilitation of the use of readily available,
inexpensive DHA in its place. One approach to achieving this
end is directed evolution of the enzyme. Several examples of
the application of directed evolution to change the substrate
specificity or synthetic utility of an aldolase have been published
recently.12 Another approach to improving synthetic utility of
an aldolase is substrate or reaction engineering, as in our recent
application of borate to allow RhaD aldolase to accept DHA.13
A third route is the discovery of novel enzymes from nature
that catalyze the desired reaction.14 In parallel with these
biocatalytic efforts, many organocatalytic asymmetric aldol15
methods have been reported, including several that utilize DHA
or hydroxy acetone as donors.15b-f Not limited by the strict
substrate dependence of enzymes, a great deal of research in
organocatalytic aldol chemistry is focused on improving catalytic
efficiency and stereoselectivity to enzymelike levels.
(11) For chemical synthesis of DHAP, see: (a) Gefflaut, T.; Lemaire, M.;
Valentin, M.-L.; Bolte, J. J. Org. Chem. 1997, 62, 5920-5922. (b) Jung
S.-H.; Jeong, J.-H.; Miller, P.; Wong, C.-H. J. Org. Chem. 1994, 59, 7182-
7184. For recent enzymatic syntheses of DHAP, see: (c) Sa´nchez-Moreno,
I.; Garc´ıa-Garc´ıa, J. F.; Bastida, A.; Garc´ıa-Junceda, E. Chem. Commun.
2004, 1634-1635. (d) Schoevaart, R.; Van Rantwigk, F.; Sheldon, R. A.
Chem. Commun. 1999, 2465-2466. (e) Fessner, W.-D.; Sinerius, G. Angew.
Chem., Int. Ed. Engl. 1994, 33, 209-212.
(12) (a) Fong, S.; Machajewski, T. D.; Mak, C. C.; Wong, C.-H. Chem. Biol.
2000, 7, 873-883. (b) Hsu, C.-C.; Hong, Z.; Wada, M.; Franke, D.; Wong,
C.-H. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 9122-9126. (c) Woodhall,
T.; Williams, G.; Berry, A.; Nelson, A. Angew. Chem., Int. Ed. 2005, 44,
2109-2112. (d) Williams, G. J.; Woodhall, T.; Farnsworth, L. M.; Nelson,
A.; Berry, A. J. Am. Chem. Soc. 2006, 128, 16238-16247.
(7) Gloster, T. M.; Meloncelli, P.; Stick, R. V.; Zechel, D.; Vasella, A.; Davies,
G. J. J. Am. Chem. Soc. 2007, 129, 2345-2354.
(8) (a) Yu, C.-Y.; Asano, N.; Ikeda, K.; Wang, M.-X.; Butters, T. D.; Wormald,
M. R.; Dwek, R. A.; Winters, A. L.; Nash, R. J.; Fleet, G. W. J. Chem.
Commun. 2004, 1936-1937. (b) Asano, N.; Ikeda K.; Yu, L.; Kato, A.;
Takebayashi, K.; Adachi, I.; Kato, I.; Ouchi, H.; Takahata, H.; Fleet, G.
W. J. Tetrahedron: Asymmetry 2005, 16, 223-229.
(13) Sugiyama, M.; Hong, Z.; Whalen, L. J.; Greenberg, W. A.; Wong, C.-H.
AdV. Synth. Catal. 2006, 348, 2555-2559.
(9) (a) Ayad, T.; Genisson, Y.; Baltas, M. Curr. Org. Chem. 2004, 8, 1211-
1233. (b) Moriarty, R. M.; Mitan, C. I.; Branza-Nichita, N.; Phares, K. R.;
Parrish, D. Org. Lett. 2006, 8, 3465-3467.
(14) (a) Samland, A.; Sprenger, G. A. Appl. Microbiol. Biotechnol. 2006, 71,
253-264. (b) Schurmann, M.; Sprenger, G. A. J. Biol. Chem. 2001, 276,
11055-11061. (c) Schurmann, M.; Schurmann, M.; Sprenger, G. A. J. Mol.
Catal. B: Enzym. 2002, 19, 247-252.
(15) (a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138-5175.
(b) Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386-7387. (c)
Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F. J. Am. Chem. Soc. 2001,
123, 5260-5267. (d) Cordova, A.; Notz, W.; Barbas, C. F. Chem. Commun.
2002, 3024-3025. (e) Fernandez-Lopez, R.; Kofoed, J.; Machuqueiro, M.;
Darbre, T. Eur. J. Org. Chem. 2005, 5268-5276. (f) Ramasastry, S. S. V.;
Zhang, H.; Tanaka, F.; Barbas, C. F. J. Am. Chem. Soc. 2007, 129, 288-
289.
(10) (a) Samland, A. K.; Sprenger, G. A. Appl. Microbiol. Biotechnol. 2006,
71, 253-264. (b) Whalen, L. J.; Wong, C.-H. Aldrichimica Acta 2006, 39,
63-71. (c) Gijsen, H. J. M.; Qiao, L.; Fitz, W.; Wong C.-H. Chem. ReV.
1996, 96, 443-474. (d) Kajimoto, T.; Liu, K. K.-C.; Pederson, R. L.; Zhong,
Z.; Ichikawa, Y.; Porco, J. A.; Wong, C.-H. J. Am. Chem. Soc. 1991, 113,
6187-6196. (e) Von der Osten, C. H.; Sinskey, A. J.; Barbas, C. F., III;
Pederson, R. L.; Wang, Y.-F.; Wong, C.-H. J. Am. Chem. Soc. 1989, 111,
3924-3927. (f) Liu, K. K.-C.; Kajimoto, T.; Chen, L.; Zhong, Z.; Ichikawa,
Y.; Wong, C.-H. J. Org. Chem. 1991, 56, 6280-6289.
9
14812 J. AM. CHEM. SOC. VOL. 129, NO. 47, 2007