10.1002/cbic.201900013
ChemBioChem
FULL PAPER
CH2Cl2:MeOH) affording pure product 13 in 95% yield (116.3 mg). Spectral
Keywords: (p)ppGpp • persisters • alarmone • fluorescent
data matched those previously reported.[11] 1H-NMR (400MHz, CDCl3):
chemosensor • PyDPA
δ(ppm)= 8.32 (d, 1H, H3Ar, 3J=9.6Hz), 8.17 (d, 2H, H6Ar, H8Ar 3J=7.6Hz),
,
8.13-8.07 (dd, 2H, H2Ar, H9Ar, 3J=7.7Hz), 8.03 (s, 2H, H4Ar, H5Ar), 7.99 (t,
[1]
[2]
[3]
[4]
[5]
Y. Zhou, Z. Xu, J. Yoon, Chem Soc Rev 2011, 40, 2222-2235.
WHO, Antimicrobial Resistance: Global Report on Surveillance, 2014
K. Potrykus, M. Cashel, Annu Rev Microbiol 2008, 62, 35-51.
M. Cashel, J. Gallant, Nature 1969, 221, 838-841.
a) Z. D. Dalebroux, M. S. Swanson, Nat Rev Microbiol 2012, 10, 203-
212; b) Z. D. Dalebroux, S. L. Svensson, E. C. Gaynor, M. S. Swanson,
Microbiol. Mol. Biol. Rev. 2010, 74, 171-199.
1H, H7Ar), 7.90 (d, 1H, H10Ar), 6.95 (s, 1H, Hp-Ph), 6.87 (s, 2H, Ho-Ph), 4.67
3
(s, 4H, CH2OH), 4.07 (t, 2H, CH2OPh, J=6.1Hz), 3.56 (t, 2H, ArCH2,
3J=7.4Hz), 2.35 (quint, 2H, ArCH2CH2). 13C-NMR (100MHz, CDCl3): δ
(ppm)= 159.7 (Cq-OCH2), 142.9 (2x Cq), 135.9 (C1), 131.6 (C5a), 131.0
(C8a), 130.1 (C3a), 128.9 (C10a), 127.6 (C2), 127.5 (C9), 127.4 (C5), 126.8
(C4), 126.0 (C7), 125.3 (C5a’), 125.1 (C3a’), 125.0 (C6, C8), 124.9 (C10),
123.5 (C3), 117.6 (CHp-Ph), 112.4 (2xCHo-Ph), 67.1 (CH2OPh), 65.3
(2xCH2OH), 31.3 (ArCH2CH2), 29.9 (ArCH2). MS (ESI) m/z: calculated for
[C27H24O3Na]+= 419.16; found: 419.64.
[6]
[7]
[8]
B. M. Fontaine, Y. Duggal, E. E. Weinert, ACS Infect. Dis. 2018.
E. Maisonneuve, K. Gerdes, Cell 2014, 157, 539-548.
a) Y. Hamagishi, A. Yoshimoto, T. Oki, Arch. Microbiol. 1981, 130, 134-
137; b) R. J. Heath, S. Jackowski, C. O. Rock, J. Biol. Chem. 1994,
269, 26584-26590.
[9]
M. Fischer, T. P. Zimmerman, S. A. Short, Anal Biochem 1982, 121,
135-139.
Chemosensor PyDPA. 1H-NMR (400MHz, CD3CN): δ(ppm)= 8.76-8.72
[10] D. Wu, A. C. Sedgwick, T. Gunnlaugsson, E. U. Akkaya, J. Yoon, T. D.
James, Chem Soc Rev 2017, 46, 7105-7123.
(d, 4H, CH-o-Py, 3J=5.3Hz), 8.37 (d, 1H, H3Ar 3J=9.2Hz), 8.21-8.09 (m,
,
3H, H6Ar, H8Ar, H9Ar), 8.07-7.90 (m, 9H, H2Ar, H4Ar, H5Ar, H7Ar, H10Ar, CH-p-
[11] H.-W. Rhee, C.-R. Lee, S.-H. Cho, M.-R. Song, M. Cashel, H. E. Choy,
Y.-J. Seok, J.-I. Hong, J. Am. Chem. Soc. 2008, 130, 784-785.
[12] a) D. H. Lee, S. Y. Kim, J. I. Hong, Angew. Chem. Int. Ed. 2004, 43,
4777-4780; b) D. A. Jose, S. Mishra, A. Ghosh, A. Shrivastav, S. K.
Mishra, A. Das, Org Lett 2007, 9, 1979-1982; c) P. Das, N. B. Chandar,
S. Chourey, H. Agarwalla, B. Ganguly, A. Das, Inorg. Chem. 2013, 52,
11034-11041.
[13] a) H. K. Cho, D. H. Lee, J. I. Hong, Chem Commun 2005, 1690-1692;
b) S. Nishizawa, Y. Kato, N. Teramae, J. Am. Chem. Soc. 1999, 121,
9463-9464.
3
3
Py), 7.67 (t, 4H, CH-m-Py, J=6.3Hz), 7.33 (d, 4H, CH-m’-Py, J=7.8Hz),
6.73 (s, 2H, Ho-Ph), 6.71 (s, 1H, Hp-Ph), 4.16 (d, 4H, PyCH2N, Jgem=16Hz),
4.02 (t, 2H, ArCH2CH2CH2O, 3J=5.5Hz), 3.82 (s, 4H, NCH2Ph,), 3.64 (d,
4H, PyCH2N), 3.61 (t, 2H, ArCH2CH2CH2O, 3J=7.3Hz), 2.36 (quint, 2H,
ArCH2CH2CH2O, 3J=6.9Hz). 13C-NMR (100MHz, CD3CN): δ(ppm)= 160.4
(Cq-OCH2), 155.4 (Cq Py), 149.1 (Co Py), 143.0 (Cp Py), 137.3 (2x Cq Ph),
134.3 (C1), 132.3 (C5a), 131.8 (C8a), 130.9 (C3a), 129.8 (C10a), 129.0 (C2),
128.5 (C9), 128.2 (C5), 127.7 (C4), 127.4 (2xCHo-Ph), 127.2 (C7), 126.4
(CH-m-Py), 126.1 (C10), 126.0 (CH-m’-Py), 126.0 (C6), 125.8 (C8), 125.7
(C5a’), 125.5 (C3a’), 124.7 (C3), 119.0 (CHp-Ph), 68.0 (ArCH2CH2CH2OPh),
[14] J. Oh, J. I. Hong, Org Lett 2013, 15, 1210-1213.
[15] H. Abe, Y. Mawatari, H. Teraoka, K. Fujimoto, M. Inouye, J. Org. Chem.
2004, 69, 495-504.
[16] P. Angelova, H. Vieker, N. E. Weber, D. Matei, O. Reimer, I. Meier, S.
Kurasch, J. Biskupek, D. Lorbach, K. Wunderlich, L. Chen, A. Terfort,
M. Klapper, K. Mullen, U. Kaiser, A. Golzhauser, A. Turchanin, Acs
Nano 2013, 7, 6489-6497.
56.9 (PhCH2N), 55.8 (PyCH2N), 31.9 (ArCH2CH2CH2OPh), 29.8
(ArCH2CH2CH2OPh). m/z: calculated for [C51H46N6OZn2 + 3ClO4‾]+
=
4+
[M4++3ClO4‾]+ : 1187.07; found: 1187.28.
[17] P. Sarathi Addy, B. Saha, N. D. Pradeep Singh, A. K. Das, J. T. Bush,
C. Lejeune, C. J. Schofield, A. Basak, Chem Commun 2013, 49, 1930-
1932.
[18] T. Mizushima, A. Yoshida, A. Harada, Y. Yoneda, T. Minatani, S.
Murata, Org. Biomol. Chem. 2006, 4, 4336-4344.
Acknowledgements
[19] O. Rasheed, A. Lawrence, P. Quayle, P. Bailey, Synlett 2015, 27, 905-
911.
[20] C. Garms, W. Francke, in Treatment of Contaminated Soil:
Fundamentals, Analysis, Applications (Eds.: R. Stegmann, G. Brunner,
W. Calmano, G. Matz), Springer Berlin Heidelberg, Berlin, Heidelberg,
2001, pp. 95-131.
This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No
758108)”. We thank Alessio Maria Caramiello for technical
assistance.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.