Notes and references
‡ The identity of all compounds was confirmed by NMR and HRMS mea-
surements. All yields were determined after flash-column chromatography
on silica gel.
1 S. D. Phillips and R. N. Castle, J. Heterocycl. Chem., 1981, 18, 223–232.
2 T. Ishikawa, Med. Res. Rev., 2001, 21, 61–72.
3 P. Borst, IUBMB Life, 2005, 57, 745–747.
4 W. A. Denny, Curr. Med. Chem., 2002, 9, 1655–1665.
5 O. B. Abdel-Halim, T. Morikawa, S. Ando, H. Matsuda and M.
Yoshikawa, J. Nat. Prod., 2004, 67, 1119–1124.
6 F. Viladomat, J. Bastida, G. Tribo, C. Codina and M. Rubiralta,
Phytochemistry, 1990, 29, 1307–1310.
7 P. R. Chopade and J. Louie, Adv. Syn. Catal., 2006, 348, 2307–2327.
8 Y. Yamamoto, Curr. Org. Chem., 2005, 9, 503–519.
9 S. Kotha, E. Brahmachary and K. Lahiri, Eur. J. Org. Chem., 2005,
4741–4767.
Scheme 5 Regioselective [2+2+2] cyclotrimerization.
10 J. A. Varela and C. Saa, Chem. Rev., 2003, 103, 3787–3801.
11 N. E. Schore, in Comprehensive Organic Synthesis, ed. B. M. Trost,
I. Fleming and L. A. Paquette, Pergamon Press, Oxford, 1991, vol. 5,
pp. 1129–1162.
12 K. P. C. Vollhardt, Angew. Chem., Int. Ed. Engl., 1984, 23, 539–556.
13 K. P. C. Vollhardt, Acc. Chem. Res., 1977, 10, 1–8.
14 D. D. Young, L. Sripada and A. Deiters, J. Comb. Chem., 2007, 9,
735–738.
cyclotrimerization reactions with the other monoalkynes were less
successful and delivered the tricyclic products 33–36 in 31–49%
yield, but with complete regioselectivity.
With a facile cyclotrimerization approach to protected dihy-
drophenanthridines in hand, the oxidation to the actual phenan-
thridine was subsequently investigated. We found that treatment
of 14–18 with an excess of cerium ammonium nitrate (CAN) for
30 min at 0 ◦C delivered the phenanthridines 37–41 in good yields
(71–78%)‡ through oxidation and simultaneous deacetylation
(Scheme 6).41,42
15 D. D. Young and A. Deiters, Angew. Chem., Int. Ed., 2007, 46, 5187–
5190.
16 Y. Zhou, J. A. Porco and J. K. Snyder, Org. Lett., 2007, 9, 393–396.
17 S. Saaby, I. R. Baxendale and S. V. Ley, Org. Biomol. Chem., 2005, 3,
3365–3368.
18 N. Agenet, V. Gandon, K. P. Vollhardt, M. Malacria and C. Aubert,
J. Am. Chem. Soc., 2007, 129, 8860–8871.
19 E. D. Sternberg and K. P. C. Vollhardt, J. Org. Chem., 1982, 47, 3447–
3450.
20 M. M. McCormick, H. A. Duong, G. Zuo and J. Louie, J. Am. Chem.
Soc., 2005, 127, 5030–5031.
21 L. Meriwether, G. W. Kennerly, R. N. Reusch and E. C. Colthup, J. Org.
Chem., 1961, 26, 5155.
22 J. Clayden and W. J. Moran, Org. Biomol. Chem., 2007, 5, 1028–1030.
23 R. T. Yu and T. Rovis, J. Am. Chem. Soc., 2006, 128, 2782–2783.
24 Y. Yamamoto, T. Arakawa, R. Ogawa and K. Itoh, J. Am. Chem. Soc.,
2003, 125, 12143–12160.
25 R. Grigg, R. Scott and P. Stevenson, J. Chem. Soc., Perkin Trans. 1,
1988, 1357–1364.
26 R. S. Senaiar, J. A. Teske, D. D. Young and A. Deiters, J. Org. Chem.,
2007, 72, 7801–7804.
27 G. Dominguez, L. Casarrubios, J. Rodriguez-Noriega and J. Perez-
Castells, Helv. Chim. Acta, 2002, 85, 2856–2861.
Scheme 6 Oxidation of 14–18 to phenanthridines 37–41.
28 D. E. Rudisill and J. K. Stille, J. Org. Chem., 1989, 54, 5856–5866.
29 S. Cheng, C. M. Tarby, D. D. Comer, J. P. Williams, L. H. Caporale,
P. L. Myers and D. L. Boger, Bioorg. Med. Chem., 1996, 4, 727–737.
30 J. A. John and J. M. Tour, Tetrahedron, 1997, 53, 15515–15534.
31 R. S. Senaiar, D. D. Young and A. Deiters, Chem. Commun., 2006,
1313–1315.
In summary, we developed a highly convergent and rapid
assembly of the phenanthridine skeleton through a microwave-
mediated [2+2+2] cyclotrimerization reaction towards dihy-
drophenanthridines followed by oxidation. Microwave irradiation
led to substantially enhanced yields in the cyclotrimerization step.
Regioselectivity issues have been solved through the choice of a
sterically demanding regio-directing group, and chemoselectivity
issues in the case of less reactive internal alkynes have been
addressed through the application of open-vessel microwave
conditions combined with syringe pump addition.
32 D. D. Young, R. S. Senaiar and A. Deiters, Chem.–Eur. J., 2006, 12,
5563–5568.
33 N. E. Leadbeater, V. A. Williams, T. M. Barnard and M. J. Collins, Org.
Proc. Res. Dev., 2006, 10, 833–837.
34 N. E. Leadbeater, V. A. Williams, T. M. Barnard and M. J. Collins,
Synlett, 2006, 2953–2958.
35 R. L. Hillard, C. A. Parnell and K. P. C. Vollhardt, Tetrahedron, 1983,
39, 905–911.
36 R. S. Narayan and B. Borhan, J. Org. Chem., 2006, 71, 1416–1429.
37 A. R. Pereira and J. A. Cabezas, J. Org. Chem., 2005, 70, 2594–2597.
38 L. A. Jacob, B. L. Chen and D. Stec, Synthesis, 1993, 611–614.
39 J. R. Kalman, S. Sternhel and J. T. Pinhey, Tetrahedron Lett., 1972,
5369.
40 To the best of our knowledge, no 9,10-dihydrophenanthrenes (or
heterocyclic derivatives thereof) with a 4-silyl substituent are known.
41 W. R. Li, Y. S. Lin and N. M. Hsu, J. Comb. Chem., 2001, 3, 634–643.
42 W. R. Li, N. M. Hsu, H. H. Chou, S. T. Lin and Y. S. Lin, Chem.
Commun., 2000, 401–402.
Acknowledgements
We gratefully acknowledge financial support by the Donors of the
American Chemical Society Petroleum Research Fund and North
Carolina State University. The NCSU Department of Chemistry
MS Facility acknowledges financial support by the North Carolina
Biotechnology Center.
This journal is
The Royal Society of Chemistry 2008
Org. Biomol. Chem., 2008, 6, 263–265 | 265
©