bottom flask equipped with a magnetic stirrer, L
-phenyl-
L. Wang et al. / Bioorg. Med. Chem. Lett. 18 (2008) 236–240
239
current studies also suggest that the dimeric modulators
have the same function as the monomeric antagonists.
alanine (1 mmol) was dissolved with sodium hydroxide
(80 mg, 2 mmol) in water (10 ml). Then, carbon disulfide
(60 ll, 1 mmol) was added to the reaction mixture, which
was stirred vigorously overnight. An aqueous solution of
ClCH2CO2Na (1 ml, 1 M, 1 mmol) was added and stirring
was continued at 23 °C for 3 h. Then hydrochloric acid
solution (3 ml, 5.5 N, 16.5 mmol) was added and the
reaction mixture was refluxed overnight. The reaction
mixture was neutralized with saturated NaHCO3 solution.
The solvent was removed under vacuum and the cyclized
product was purified by flash chromatography. In a
round-bottom flask equipped with a reflux condenser
and a magnetic stirrer, cyclized rhodanine intermediate
(1 mmol) in toluene (20 ml) was added. To this, 4,40-
[methylenebis(oxy)]bis benzaldehyde (0.45 mmol) was
added along with ammonium acetate (3 mmol). The
mixture was refluxed overnight and the solvent was
removed under vacuum. The final rhodanine candidate
was purified by flash chromatography. 3e-D1 (54%) yellow
powder. TLC (CH2Cl2/MeOH = 9:1), Rf = 0.18. M.p.
242–3 °C. IR (KBr, cmax, cmꢁ1): 3700–2200, 2923, 2852,
Supplementary data
Supplementary data associated with this article can be
References and notes
1. Reed, J. C.; Miyashita, T.; Takayama, S.; Wang, H. G.;
Sato, T.; Krajewski, S.; Aime-Sempe, C.; Bodrug, S.;
Kitada, S.; Hanada, M. J. Cell. Biochem. 1996, 60, 23.
2. Kiechle, F. L.; Zhang, X. Clin. Chim. Acta 2002, 326, 27.
3. Folkman, J. Semi. Cancer Biol. 2003, 13, 159.
4. Reinhold, W. C.; Kouros-Mehr, H.; Kohn, K. W.;
Maunakea, A. K.; Lababidi, S.; Roschke, A.; Stover, K.;
Alexander, J.; Pantazis, P.; Miller, L.; Liu, E.; Kirsch, I.
R.; Urasaki, Y.; Pommier, Y.; Weinstein, J. N. Cancer
Res. 2003, 63, 1000.
1695, 1590, 1506, 1344, 1273, 1239, 1218, 1170, 999 cmꢁ1
.
1H NMR (CDCl3): 7.60 (2H, s, 4-H, 40-H), 7.40 (4H, d,
J = 9 Hz, 10-H, 11-H, 100-H, 110-H), 7.30–7.10 (14H, m,
5-H, 6-H, 7-H, 8-H, 9-H, 12-H, 13-H, 50-H, 60-H, 70-H, 80-
H, 90-H, 120-H, 130-H), 6.10 (2H, t, J = 6.9 Hz, 2-H, 20-H),
5.81 (2H, s, 1-H), 3.62 (4H, d, J = 6.9 Hz, 3-H, 30-H) ESI-
MS (negative): m/z 446, 448 (MꢁꢁH); 402, 404 (MꢁꢁH–
CO2). ESI-MS (m/z, negative): 781 (Mꢁ1). The binding
assay of small-molecule antagonists to anti-apoptotic Bcl-
2 proteins was run essentially as described in Xing, C.;
Wang, L.; Tang, X.; Sham, Y. Bioorg. Med. Chem. 2007,
15, 2167. Human recombinant Bcl-2, Bcl-XL, and Bcl-w
were prepared. To determine the binding affinity of small
molecules for an anti-apoptotic Bcl-2 protein, a series of 3-
fold dilutions of small molecules were prepared in
dimethylsulfoxide, that is, 10 mM, 3.33 mM, 1.11 mM,
0.37 mM, 0.123 mM, 0.041 mM, 0.014 mM, and 0 mM.
To each well in a 96-well half-area black plate, 5 ll of the
small molecule stock solution was added. A solution
containing 50 nM Flu-Bak peptide and the anti-apoptotic
Bcl-2 protein to be tested in PBS buffer, pH 7.0, 1 mM
DTT was prepared and incubated at 23 °C for one hour.
The concentration of the anti-apoptotic Bcl-2 protein used
corresponds to the one that resulted in 60% of Flu-Bak
peptide complex with the anti-apoptotic Bcl-2 protein and
such a concentration was determined in the Flu-Bak and
Bcl-2 protein saturation binding experiment. The corre-
sponding concentrations of Bcl-2, Bcl-XL, and Bcl-w
needed to achieve 60% complex formation under the
assay conditions are 1000 nM, 880 nM, and 1200 nM,
respectively. To each well the Flu-Bak peptide and anti-
apoptotic Bcl-2 protein solution (45 ll) was added by
auto-injection at a rate of 200 ll/s. The sample was
incubated at 23 °C for one hour and shaken for two
seconds before fluorescence polarization (in mP unit) was
measured. Controls included dose–response measurements
in the absence of proteins to assess for any interactions
between the compounds and the Flu-Bak peptide. Even-
tual effects were taken into account by subtraction. The
inhibitory constant (Ki) was determined by fitting the FP
changes to the concentration of the small molecule
competing ligand by using an equation developed in
Nikolovska-Coleska, Z.; Wang, R.; Fang, X.; Pan, H.;
Tomita, Y.; Li, P.; Roller, P. P.; Krajewski, K.; Saito, N.
G.; Stuckey, J. A.; Wang, S. Anal. Biochem. 2004, 332,
261. For cytochrome c release, mitochondria were isolated
from mouse liver using differential centrifugation for
5. Chan, S. L.; Lee, M. C.; Tan, K. O.; Yang, L.; Lee, A. S.
Y.; Flotow, H.; Fu, N. Y.; Butler, M. S.; Soejarto, D. D.;
Buss, A. D.; Yu, V. C. J. Biol. Chem. 2003, 278, 20453.
6. Reed, J. C. Oncogene 1998, 17, 3225.
7. Adams, J. M.; Cory, S. Trends Biochem. Sci. 2001, 26, 61.
8. Sattler, M.; Liang, H.; Nettesheim, D. N.; Meadows, R.
P.; Harlan, J. E.; Eberstadt, M.; Yoon, H. S.; Shuker, S.
B.; Chang, B. S.; Minn, A. J.; Thompson, C. B.; Fesik, S.
W. Science 1997, 275, 983.
9. Holinger, E. P.; Chittenden, T.; Lutz, R. J. J. Biol. Chem.
1999, 274, 13298.
10. Kim, R.; Tanabe, K.; Emi, M.; Uchida, Y.; Toge, T.
Cancer 2005, 103, 2199.
11. Kitada, S.; Leone, M.; Sareth, S.; Zhai, D.; Reed, J. C.;
Pellecchia, M. J. Med. Chem. 2003, 46, 4259.
12. Oltersdorf, T.; Elmore, S. W.; Shoemaker, A. R.; Arm-
strong, R. C.; Augeri, D. J.; Belli, B. A.; Bruncko, M.;
Deckwerth, T. L.; Dinges, J.; Hajduk, P. J.; Joseph, M. K.;
Kitada, S.; Korsmeyer, S. J.; Kunzer, A. R.; Letai, A.; Li,
C.; Mitten, M. J.; Nettesheim, D. J.; Ng, S.; Nimmer, P.
M.; O’Connor, J. M.; Oleksijew, A.; Petros, A. M.; Reed,
J. C.; Shen, W.; Tahir, S. K.; Thompson, C. B.; Tomaselli,
K. J.; Wang, B.; Wendt, M. B.; Zhang, H.; Fesik, S. W.;
Rosenberg, S. H. Nature 2005, 435, 677.
13. Tanabe, K.; Kim, R.; Inoue, H.; Emi, M.; Uchida, Y.;
Toge, T. Int. J. Oncol. 2003, 22, 875.
14. Wang, J.; Liu, D.; Zhang, Z.; Shan, S.; Han, X.;
Srinivasula, S. M.; Croce, C. M.; Alnemri, E. S.; Huang,
Z. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 7124.
15. Clackson, T.; Yang, W.; Rozamus, L. W.; Hatada, M.;
Amara, J. F.; Rollins, C. T.; Stevenson, L. F.; Magari, S.
R.; Wood, S. A.; Courage, N. L.; Lu, X.; Cerasoli, F., Jr.;
Gilman, M.; Holt, D. A. Proc. Natl. Acad. Sci. U.S.A.
1998, 95, 10437.
16. Zhang, Z.; Merritt, E. A.; Ahn, M.; Roach, C.; Hou, Z.;
Verlinde, C. L. M. J.; Hol, W. G. J.; Fan, E. J. Am. Chem.
Soc. 2002, 124, 12991.
17. Green, N. S.; Palaninathan, S. K.; Sacchettini, J. C.; Kelly,
J. W. J. Am. Chem. Soc. 2003, 125, 13404.
18. Degterev, A.; Lugovskoy, A.; Cardone, M.; Mulley, B.;
Wagner, G.; Mitchison, T.; Yuan, J. Nat. Cell Biol. 2001,
3, 173.
19. The general experimental procedure for preparing the
BH3I-1 based antagonists is described below with the
synthesis of analog 3e-D1 as an example. In a round-