618
J. S. Yadav et al. / Tetrahedron Letters 49 (2008) 614–618
11. Luzung, M. R.; Toste, F. D. J. Am. Chem. Soc. 2003, 125, 15760–
15761.
12. Sherry, B. D.; Radosevich, A. T.; Toste, F. D. J. Am. Chem. Soc.
2003, 125, 6076–6077.
13. Kennedy-Smith, J. J.; Young, L. A.; Toste, F. D. Org. Lett. 2004, 6,
1325–1327.
14. Georgy, M.; Boucard, V.; Campagne, J. M. J. Am. Chem. Soc. 2005,
127, 14180–14181.
terms of conversion. A solution of 10 mol % of LiBF4 in
acetonitrile was not so effective for this reaction, albeit,
acetonitrile can form the complex CH3CN+–BF3 which
acts as the catalytic species. The use of Cu(BF4)2 makes this
procedure very mild, simple, and convenient. Alternatively,
5 mol % of scandium triflate was also found to be an
equally effective catalyst for this conversion and compara-
tive results are presented in Table 2.
15. Kuninobu, Y.; Ishii, E.; Takai, K. Angew. Chem., Int. Ed. 2007, 46,
3296–3299.
In summary, a solution of 10 mol % of Cu(II) tetrafluo-
roborate in acetonitrile was shown to be a highly efficient
and convenient catalytic medium for the preparation of
1,5-enynes via the allylation of propargylic and allylic alco-
hols with allylsilanes. In addition to its simplicity and mild
reaction conditions, this method provides good yields of
1,5-enynes with high selectivity, which makes it a useful
and attractive process.
16. Schwier, T.; Rubin, M.; Gevorgyan, V. Org. Lett. 2004, 6, 1999–2001.
17. Zhan, Z. P.; Yang, W. Z.; Yang, R. F.; Yu, J. L.; Li, J. P.; Liu, H. J.
Chem. Commun. 2006, 3352–3354.
18. Zhan, Z. P.; Yu, J. L.; Liu, H. J.; Cui, Y. Y.; Yang, R. F.; Yang, W.
Z.; Li, J. P. J. Org. Chem. 2006, 71, 8298–8301.
19. Kabalka, G. W.; Yao, M. L.; Borella, S. J. Am. Chem. Soc. 2006, 128,
11320–11321.
20. General procedure: To a stirred solution of the propargylic alcohol
(1 mmol) and Cu(BF4)2 (10 mol %) or 5 mol % Sc(OTf)3 in aceto-
nitrile (10 mL), allyltrimethylsilane (1.5 mmol) was added slowly
dropwise at 0 °C and the resulting mixture allowed to stir at room
Acknowledgment
temperature for the appropriate time (Tables
1 and 2). After
completion of the reaction, as indicated by TLC, the reaction mixture
was quenched with water and extracted with dichloromethane
(2 Â 10 mL). The combined organic extracts were dried over anhy-
drous Na2SO4. Removal of the solvent followed by purification on
silica gel using ethyl acetate/n-hexane (1:9) as eluent afforded pure 1,5-
enyne. Spectral data for selected products: Entry d (Table 1): IR
(KBr): m 3055, 2957, 2930, 2865, 1637, 1601, 1506, 1436, 1368, 1323,
T.S.R. and K.V.R. thank CSIR, New Delhi, for the
awards of fellowships.
References and notes
1125, 914, 816, 746 cmÀ1 1H NMR (CDCl3, 300 MHz): d 7.77–7.72
.
1. Nishida, M.; Adachi, N.; Onozuka, K.; Matsumura, H.; Mori, M. J.
Org. Chem. 1998, 63, 9158–9159.
(m, 4H), 7.45–7.35 (m, 3H), 5.90–5.76 (m, 1H), 5.06–4.98 (m, 2H),
3.77 (t, 1H, J = 6.9 Hz), 2.52, (t, 2H, J = 6.9 Hz), 2.25 (t, 2H,
J = 6.8 Hz), 1.58–1.39 (m, 4H), 0.94 (t, 3H, J = 6.9 Hz); 13C NMR
(CDCl3, 75 MHz): d 139.3, 135.8, 133.4, 132.2, 127.9, 127.7, 127.5,
125.9, 125.4, 116.7, 83.9, 81.0, 42.8, 38.1, 31.1, 21.9, 18.4, 13.5. Mass
(ESI): 263 (M + H), 261 (MÀH), 221 (MÀ41). Entry f (Table 1): IR
(KBr): m 2935, 2833, 1497, 1462, 1278, 1241, 1216, 1049, 915, 802, 756,
692 cmÀ1. 1H NMR (CDCl3, 200 MHz): d 7.43–7.22 (m, 5H), 7.15 (d,
J = 2.2 Hz,1H), 6.74–6.63 (m, 2H), 6.02–5.82 (m, 1H), 5.11–5.02 (m,
2H), 4.32 (t, 1H, J = 6.9 Hz), 3.78 (s, 3H), 3.74 (s, 3H), 2.63–2.36 (m,
2H); 13C NMR (CDCl3, 75 MHz): d 153.4, 150.3, 135.7, 131.5, 130.7,
128.0, 127.6, 123.7, 116.6, 115.0, 111.7, 111.2, 91.1, 83.2, 55.8, 55.5,
40.7, 31.9; Mass (ESI): 292 (M + H), 251 (MÀ41).
2. Corey, E. J.; Katzenellenbogen, J. A.; Gilman, N. W.; Roman, S. A.;
Erickson, B. W. J. Am. Chem. Soc. 1968, 90, 5618–5620.
3. Corey, E. J.; Achiwa, K. Tetrahedron Lett. 1970, 26, 2245–2248.
4. Rhode, O.; Hoffmann, H. M. R. Tetrahedron 2000, 56, 6479–6487.
5. Nicholas, K. M.; Mulvaney, M.; Bayer, M. J. Am. Chem. Soc. 1980,
102, 2508–2510.
6. Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207–214.
7. Green, J. R. Curr. Org. Chem. 2001, 5, 809–826.
8. Teobald, B. J. Tetrahedron 2002, 58, 4133–4170.
9. Kuhn, O.; Rau, D.; Mayr, H. J. Am. Chem. Soc. 1998, 120, 900–907.
10. Nishibayashi, Y.; Shinoda, A.; Miyake, Y.; Matsuzawa, H.; Sato, M.
Angew. Chem., Int. Ed. 2006, 45, 4835–4839.