976
S. V. Amosova et al. / Tetrahedron Letters 49 (2008) 974–976
1
I.; Yarosh, O. G.; Voronkov, M. G. Khim. Geterotsikl. Soed. 2003,
634–635; Amosova, S. V.; Martynov, A. V.; Mahaeva, N. A.;
Belozerova, O. V.; Penzik, M. V.; Albanov, A. I.; Yarosh, O. G.;
Voronkov, M. G. J. Organomet. Chem. 2007, 692, 946–952.
1,4-diselenafulvene. The H NMR spectra contain signals
which can be attributed to the E- and Z-3,5-di(2-thi-
enoyl)-1,4-diselenafulvene. However, the amounts of these
compounds were very low and they were not isolated from
the reaction mixture.
11. Typical procedure for the preparation of diselenetane 1 and diselena-
fulvenes 2 and 3. A solution of triethylamine (0.7 ml) in absolute
methanol (5 ml) was added to a solution of selenourea (0.615 g,
5 mmol) in absolute acetonitrile (10 ml) under argon at 0 °C followed
by the addition of a solution of benzoylbromoacetylene (1.04 g,
5 mmol) in acetonitrile (10 ml). The reaction mixture was stirred for
2 h in an ice/water bath. The resulting yellow solid (1.32 g) was
filtered off, washed with absolute methanol and dried. The solid was
subjected to column chromatography (silica gel, chloroform/
The proposed reaction path involves the formation of
selenuronium salts, which generate selenoketenes and ethyne-
selenolates under the action of triethylamine (Scheme 3).
Selenoketenes are promising intermediates for the syn-
thesis of selenium-containing heterocycles and some of
them can be isolated at low temperature.3 Selenoketenes
are apt to both dimerisation and [1,3]-dipolar cycloaddi-
tion reaction with ethyneselenolates.14 We suggest that
selenoketene dimerisation leads to diselenetanes 1, 4 and
5, whereas a [1,3]-dipolar cycloaddition reaction of seleno-
ketenes and ethyneselenolates furnishes diselenafulvenes 2
and 3. It is noteworthy that dimerisation of thiocarbonyl
compounds to 1,3-dithietanes is a known reaction which
proceeds under various conditions, for example, in the
presence of bases and under irradiation.2
hexane = 1:10) to give diselenetane
1 (0.24 g, 23% yield) and
diselenafulvenes 2 and 3 (0.627 g, 60% yield) as a mixture of Z- and
E-isomer (E/Z = 3/2). Attempts to separate isomers 2 and 3 failed due
to Z-E-isomerisation during chromatography. Diselenetane 1 was
obtained as a yellow powder, mp 203–204 °C. 1H NMR (400 MHz,
HMPA-d18): d 8.92 (s, 2H, @CH), 8.16 (m, 4H, Hortho), 7.69 (m, 2H,
Hpara), 7.55 (m, 4H, Hmeta). 77Se NMR (76.3 MHz, HMPA-d18): d 993
(JSeH = 10.5 Hz). MS m/z
(
80Se): 420 (28) [M]+Å
,
209 (6)
[C6H5C(O)C2HSe]+, 105 (100) [C2HSe]+, 77 (80) [C6H5]+, 51 (18)
[C4H3]+. Anal. Calcd for C18H12O2Se2: C, 51.70; H, 2.89; Se, 37.76.
Found: C, 51.93; H, 3.02; Se, 38.17. The mixture of E- and Z-isomer 2
and 3 (E/Z = 3/2) was obtained as a yellow powder, mp 265–267 °C.
MS, m/z (80Se): 420 (20) [M]+Å, 343 (5) [MÀC6H5]+, 290 (10)
[MÀPhC(O)C2H]+Å, 158 (9) [C6H6Se]+Å, 133 (6) [C(O)C2HSe]+, 105
(84) [C2HSe]+, 77 (100) [C6H5]+, 51 (23) [C4H3]+. In the 1H NMR
spectrum (400 MHz, CDCl3), the mixture contains signals for the
E-isomer 2 [d 8.53 (d, JHH = 0.7 Hz, 1H, CHSe), 8.10 (d, JHH = 0.7,
1H, O@CCH)] and signals for the Z-isomer 3 [d 8.36 (s, 1H, CHSe),
8.02 (s, 1H, O@CCH)] along with multiplets due to the aromatic
protons. In the 77Se NMR spectrum (76.3 MHz, CDCl3), the mixture
contains signals for the E-isomer 2 [d 813 (2JSeH = 46.0, 3JSeH = 11.5,
@CHSe), 694 (3JSeH = 8.4, 3JSeH = 7.3, O@CCSe)] and signals for the
Thus, we have described the novel reaction of selenourea
with benzoylbromoacetylene and 2-thienoylbromoacetyl-
ene affording new 4- and 5-membered heterocycles.
References and notes
1. Nakhmanovich, A. S.; Glotova, T. E.; Skvortsova, G. G.; Sigalov, M.
V.; Komarova, T. N. Zh. Org. Khim. 1984, 20, 2145–2148; Nakhma-
novich, A. S.; Elokhina, V. N.; Shcherbinina, T. P.; Voronkov, M. G.
Izv. AN, Ser. Khim. 1976, 1631–1633.
3
Z-isomer 3 [d 772 (3JSeH = 10.5), 736 (2JSeH = 56.4, JSeH = 10.4)].
2. Pushkara Rao, V. Sulfur Rep. 1992, 12, 359–403.
3. Holm, A.; Berg, C.; Bjerre, C.; Bak, B.; Swanholt, H. J. Chem. Soc.,
Chem. Commun. 1979, 99–100.
12. Synthesis of E-2,4-bis(2-thienoylmethylene)-1,3-diselenetane (4). Tri-
ethylamine (0.7 ml) was added to a solution of selenourea (0.615 g,
5 mmol) in absolute methanol (20 ml) under argon at À30 °C
followed by the addition of a solution of 2-thienoylbromoacetylene
(1.07 g, 5 mmol) in absolute methanol (15 ml). The reaction mixture
was stirred for 1.5 h at À30 °C. The resulting solid (0.46 g) was filtered
off, washed with absolute methanol and dried. Crystallisation of the
solid from 1,4-dioxane gave pure compound 4 (0.42 g, 40% yield), mp
274–275 °C (1,4-dioxane). 1H NMR (400 MHz, HMPA-d18): d 8.87 (s,
2H, @CHC@O) 8.55 (m, 4H, C3H, C5H), 7.39 (m, 2H, C4H). 13C
NMR (100.6 MHz, HMPA-d18): d 117.44 (–CH@) 128.25 (C4), 133.28
(C3), 136.40 (C5), 144.76 (@C–Se), 148.87 (C2), 181.57 (C@O). 77Se
NMR (76.3 MHz, HMPA-d18): d 696 (3JSeH = 11.5). MS, m/z, 80Se
(rel. int., %): 432 (18) [M]+Å, 296 (6) [MÀ2-ThC(O)C2H]+Å, 164 (10)
[2-ThSeH]+Å, 133 (12) [SeC(O)C2H]+, 111 (100) [2-ThC(O)]+, 83 (18)
[2-Th]+, 39 (26) [C3H4]+. Anal. Calcd for C14H8O2S2Se2: C, 39.08; H,
1.87; S, 14.90; Se, 36.70. Found: C, 39.09; H, 1.81; S, 14.86; Se, 36.18.
13. Thermal isomerisation of the E-isomer 4 to the Z-isomer 5. A solution
of the E-isomer 4 in HMPA-d18 was heated at 120 °C for 1.5 h. In the
1H NMR spectrum (400 MHz, HMPA-d18), the mixture contains
signals for the Z-isomer 5: d 8.75 s (2H, @CHC@O), 8.56 m (4H,
C3H, C4H), 8.36 m (2H, C5H). According to the 1H NMR data, the
yields of the Z-isomer 5 and the E-isomer 4 were 45% and 55%,
respectively.
4. Lakshmikantham, M. L.; Cava, M. P.; Albeck, M.; Engman, L.;
Wudl, F.; Ahron-Shalom, E. J. Chem. Soc., Chem. Commun. 1981,
828–829; Haas, A.; Limberg, C.; Sterlin, S. R. J. Fluorine Chem. 1991,
53, 71–78; Okuma, K.; Kubota, T. Tetrahedron Lett. 2001, 42, 3881–
3883; Bender, S. L. N.; Haley, F.; Luss, H. R. Tetrahedron Lett. 1981,
22, 1495–1496; Laishev, V. Z.; Petrov, M. L.; Petrov, A. A. Zh. Org.
Khim. 1981, 17, 2064–2071; Rajagopal, D.; Lakshmikantham, M. V.;
Cava, M. P.; Broker, G. A.; Rogers, R. D. Tetrahedron Lett. 2003, 44,
2397–2400; Haas, A.; Spehr, M. J. Fluorine Chem. 1989, 45, 35.
5. Schukat, G.; Fangha¨nel, E. Sulfur Rep. 1993, 14, 245–390.
6. Wudl, F. In Organoselenium Chemistry; Liotta, D., Ed.; John Wiley
and Sons: New York, 1987; pp 395–409.
7. Renson, M. In The Chemistry of Organic Selenium and Tellurium
Compounds; Patai, S., Rappoport, Z., Eds.; John Wiley and Sons Ltd:
New York, 1986; Vol. 1, pp 399–516.
8. Potapov, V. A.; Gusarova, N. K.; Amosova, S. V.; Kashik, A. S.;
Trofimov, B. A. Sulfur Lett. 1985, 4, 13–18.
9. Amosova, S. V.; Potapov, V. A.; Bulakhova, Z. A.; Romanenko, L. S.
Sulfur Lett. 1991, 13, 143–146.
10. Potapov, V. A.; Amosova, S. V.; Belozerova, O. V.; Albanov, A. I.;
Yarosh, O. G.; Voronkov, M. G. Khim. Geterotsikl. Soed. 2003, 633–
634; Potapov, V. A.; Amosova, S. V.; Belozerova, O. V.; Albanov, A.
14. Petrov, M. L.; Petrov, A. A. Usp. Khim. 1987, 56, 267–286.