734
P. Campiglia et al. / Tetrahedron Letters 49 (2008) 731–734
8. Haaima, G.; Lohse, A.; Buchardt, O.; Nielsen, P. E. Angew. Chem.,
Int. Ed. 1996, 35, 1939–1942.
9. Sasaki, Y.; Coy, D. Peptides 1987, 8, 119–121.
10. Dueholm, K. L.; Egholm, M.; Buchardt, O. Org. Prep. Proced. Int.
1993, 25, 457–462.
improve the yields we performed the syntheses in a micro-
wave dedicated oven (Milestone, CombiChem) and com-
pared the results with the conventional procedure.26 This
further study demonstrated that the microwave-assisted
reaction resulted in a clear advantage only in reduction
on reaction time, being reduced to 1 h from 16 h, without
appreciable variation in yield.
A simple and convenient optimized procedure is
described for the preparation of w[CH2NH] surrogate in
solution. We have demonstrated the feasibility of our
strategy by conventional and microwave synthesis of the
aminomethylene surrogate bond. Every step of the proce-
dure was optimized with respect to time and economy.
The compatibility of this method with conventional
solid phase synthesis is currently under investigation in
our laboratory. Achieving this objective will facilitate the
routine introduction of a w[CH2NH] peptide bond surro-
gate into various biologically active peptides leading to
the synthesis of many important compounds and interest-
ing structure activity relationship studies.
11. Lin, S.; Hanzlik, R. P. J. Med. Chem. 1992, 35, 1067–1075.
12. Mancuso, A. J.; Swern, D. Synthesis 1981, 3, 165–184.
13. (a) Fehrentz, J.-A.; Castro, B. Synthesis 1983, 676–678; (b) Meyer,
J.-P.; Davis, P.; Lee, K. B.; Porreca, F.; Yamamura, H.; Hruby, V. J.
J. Med. Chem. 1995, 38, 3462–3468.
14. (a) Lubell, W. L.; Rapoport, H. J. Am. Chem. Soc. 1987, 109, 236–
239; (b) Coy, D. H.; Hocart, S. J. Tetrahedron 1988, 44, 835–838.
15. Sasaki, Y.; Murphy, W. A.; Heiman, M. L.; Lance, V. A.; Coy, D. H.
J. Med. Chem. 1987, 30, 1162–1166.
16. Boyarskaya, N. P.; Prokhorov, D. I.; Kirillova, Y. G.; Zvonkovab, E.
N.; Shvetsb, V. I. Tetrahedron Lett. 2005, 46, 7359–7361.
17. Campiglia, P.; Gomez-Monterrey, I.; Longobardo, L.; Lama, T.;
Novellino, E.; Greco, P. Tetrahedron Lett. 2004, 45, 1453–1456.
18. Jobron, L.; Hummel, G. Org. Lett. 2000, 2, 2265–2267.
19. Micha Jost, M.; Jorg-Christian Greie, J. C. M.; Nina Stemmer, N.;
Sven David Wilking, S. D.; Karlheinz Altendorf, K.; Sewald, N.
Angew. Chem., Int. Ed. 2002, 41, 4267–4269.
20. (a) Caputo, R.; Cassano, E.; Longobardo, L.; Palumbo, G. Tetra-
hedron Lett. 1995, 36, 167–169; (b) Caputo, R.; Cassano, E.;
Longobardo, L.; Palumbo, G. Tetrahedron 1995, 51, 12337–12350.
21. Salvatore, R. N.; Nagle, A. S.; Schmidt, S. E.; Jung, K. W. Org. Lett.
1999, 1, 1893–1896.
Acknowledgments
˚
22. Representative experimental procedure: To the activated powdered 4 A
1
molecular sieves (500 mg) in anhydrous N,N-dimethylformamide
(10 mL) was added cesium carbonate (326 mg, 1.0 mmol), and the
suspension was stirred for 10 min. Then phenylalanine methyl ester
hydrochloride (108 mg, 0.5 mmol) was added and followed by
additional 30 min of stirring, b-iodoamine derivative 1a (160 mg,
0.5 mmol) was added. The reaction was stirred for 16 h, filtered to
remove the molecular sieves and undissolved inorganic salts, and
rinsed several times with EtOAc. Then the filtrate was concentrated
and the residue was taken up in 10% NaHCO3 solution and extracted
with CH2Cl2 (4 ꢂ 25 mL). The combined organic layers were washed
with brine, dried over anhydrous sodium sulfate, filtered, and
concentrated. Flash column chromatography (n-hexane–EtOAc, 3:2
v/v) afforded the aminomethylene analogue 2a (128 mg, 80%) as a
colorless oil.
The LC/MS and H NMR spectral data were provided
by Centro di Ricerca Interdipartimentale di Analisi Stru-
mentale, Universita degli Studi di Napoli ‘Federico II’.
The assistance of the staff is gratefully appreciated. This
work was supported by grant from MIUR—PRIN 2005.
`
References and notes
1. Loffet, A. J. Peptide Sci. 2001, 8, 1–7.
2. Kessler, H. Angew. Chem., Int. Ed. Engl. 1982, 21, 512–523.
3. Cardillo, G.; Gentilucci, L.; Qasem, A. R.; Sgarzi, F.; Spampinato, S.
J. Med. Chem. 2002, 45, 2571–2578.
4. Spatola, A. F. In Chemistry and Biochemistry of Amino Acids,
Peptides and Proteins; Weinstein, B., Ed.; Marcel Dekker: NY, 1983;
Vol. VII, p 267.
5. (a) Graham, S. L.; de Solms, S. J.; Giuliani, E. A.; Kohl, N. E.;
Mosser, S. D.; Oliff, A. I.; Pompliano, D. L.; Rands, E.; Breslin, M.
J.; Deana, A. A.; Garsky, V. M.; Scholz, T. H.; Gibbs, J. B.; Smith, R.
L. J. Med. Chem. 1994, 37, 725–732; (b) Gaudron, S.; Grillon, C.;
Thierry, J.; Riches, A.; Wierenga, P. K.; Wdziecazk-Bakala, J. J. Stem
Cells 1999, 17, 100–106.
6. (a) Martinez, J.; Bali, J.-P.; Rodriguez, M.; Castro, B.; Magous, R.;
Laur, J.; Lignon, M.-F. J. Med. Chem. 1985, 28, 1874–1879; (b) Coy,
D. H.; Heinz-Erian, P.; Jiang, N. Y.; Sasaki, Y.; Taylor, J.; Moreau,
J.-P.; Wolfrey, W. T.; Gardner, J. D.; Jensen, R. T. J. Biol. Chem.
1988, 263, 5056–5060; (c) Hocart, S. J.; Murphy, W. A.; Coy, D. H. J.
Med. Chem. 1990, 33, 1954–1958; (d) Doulut, S.; Rodriguez, M.;
Lugrin, D.; Vecchini, F.; Kitabgi, P.; Aumelas, A.; Martinez, J. Pept.
Res. 1992, 5, 30–38; (e) Meyer, J.-P.; Davis, P.; Lee, K. B.; Porreca,
F.; Yamamura, H. I.; Hruby, V. J. J. Med. Chem. 1995, 38, 3462–
3468.
7. (a) Stemmer, C.; Quesnel, A.; Prevost-Blondel, A.; Zimmermann, C.;
Muller, S.; Briand, J. P.; Pircher, H. J. Biol. Chem. 1999, 274, 5550–
5556; (b) Calbo, S.; Guichard, G.; Muller, S.; Kourilsky, P.; Briand, J.
P.; Abastado, J. P. J. Immunother. 2000, 23, 125–130; (c) Fridkin, G.;
Gilon, C.; Gilon, T.; Loyter, A. J. Pept. Res. 2001, 58, 36–44.
23. Cushman, M.; Oh, Y.; Copeland, T. D.; Oroszlan, S.; Snyder, S. W. J.
Org. Chem. 1991, 56, 4161–4167.
24. No racemization was confirmed by the HPLC analysis of the crude
products Fmoc-Ala-w[CH2NH]Phe-OMe 2c and Fmoc-DAla-
w[CH2NH]Phe-OMe 2d. This analysis showed the signal correspond-
1
ing to one single isomer (Fig. 1). In addition the H NMR spectra of
the crude products 2c and 2d did not show significant differences of
chemical shifts. Thus, the resonance values of a-H Phe residues were
4.32 for 2c and 4.39 for 2d, while the values for a-H Ala residues were
3.85 and 3.84, respectively.
25. As example, significant 1H NMR analytical data of 2g: 1H NMR
(500 MHz, CD3OD): d, 1.42 ( s, 9H, Boc); 1.94–2.00 (m, 3H, H-c, H-b
Pro); 2.26–2.29 (m, 1H, H-b Pro); 2.72–2.80 (m, 2H, CH–CH2–Ph);
3.47–3.50 (m, 2H, H-d Pro); 3.74 (s, 3H, OCH3); 4.00–4.02 (m, 1H,
H-a Pro); 4.07 (m, 2H, CH2N); 4.37 (m, 1H, CH-CH2-Ph); 4.81 (br s,
1H, NH-Boc); 7.33–7.22 (m, 5H, aryl).
26. General procedure: All experiments were carried out in a Milestone
CombiChem Microwave Synthesizer with vessels of 4-mL volume,
using DMF as the solvent. In all irradiation experiments, rotation of the
rotor, irradiation time, temperature, and power were monitored with
the ‘easyWAVE’ software package. Temperature was monitored with the
aid of an optical fiber inserted into one of the reaction containers. Once
50 °C was reached the reaction mixture was held at this temperature for
10 min and then cooled rapidly to room temperature.