10.1002/adsc.202100301
Advanced Synthesis & Catalysis
[1] T. Hudlicky and J. W. Reed in The Way of Synthesis:
Evolution of Design and Methods for Natural Products,
Wiley-VCH, Weinheim, Germany 2007.
[15] All yield data in this manuscript represents isolated
yields. No re-calculated yields, based on recovered
limiting reagent, are given. Recovered triketone is
sometimes shown to demonstrate that by-product
formation is minimal or not occurring.
[2] a) See the conversion of 4 to 6 within: G. S.
Gadaginamath, A. G. Kamat, Proc. Indian Acad. Sci.
(Chem. Sci.) 1994, 106, 857-862; b) See the conversion
of 8 to 13 within: R. M. Mohareb, F. O. Al Farouk, S.
M. Sherif, K. Karaghiosoff, Med. Chem. Res. 2014, 23,
3165-3177; c) See Scheme 2 for two examples within:
H. Tan, X. Chen, H.Chen, H. Liu, S. Qiu, Eur. J. Org.
Chem. 2015, 4956-4963; d) See the conversion of 9 to
10 within: J. Gomes, C. Daeppen, R. Liffert, J.
Roesslein, E. Kaufmann, A. Heikinheimo, M.
Neuburger, K. Gademann, J. Org. Chem. 2016, 81,
11017-11034.
1
[16] The dr information was determined by H NMR for
crude products 5, and is noted for 5a-k in the
Supporting Information.
[17] J. Jiang, L. He, S. W. Luo, L. F. Cun, L.-Z. Gong,
Chem. Commun. 2007, 736-738.
[18] For additional selected examples of 4-substituted
cyclohexanone aldol desymmetrizations, albeit without a
1,3-diketone moiety, under chiral amine catalysis, see
references 9, 14a and: a) S. Li, C. Wu, X. Fu, Q. Miao, Ind.
Eng. Chem. Res. 2011, 50, 13711-13716; b) S. Li, C. Wu,
X. Long, X. Fu, G. Chen, Z. Liu, Catal. Sci. Technol. 2012,
2, 1068-1071; c) T. C. Nugent, F. T. Najafian, H. A. E. D.
Hussein, I. Hussain, Chem. Eur. J. 2016, 22, 14342-14348;
d) T. C. Nugent, P. Spiteller, I. Hussain, H. A. E. D.
Hussein, F. T. Najafian, Adv. Synth. Catal. 2016, 358,
3706-3713.
[3] For a review on Knoevenagel condensations, see: L. F.
Tietze, U. Beifuss, in Comprehensive Organic
Synthesis, Vol. 2 (Ed.: B. M. Trost), Pergamon, Oxford,
UK, 1991, p. 341–394.
[4] For an aldol reaction review, see: B. M. Trost, C. S.
Brindle, Chem. Soc. Rev. 2010, 39, 1600-1632.
[5] See Table 4 within: P. Goswami, B. Das, Tetrahedron
Lett. 2009, 50, 897-900.
[19] For an enzymatic example of diketone
desymmetrization, see: T. Peschke, P. Bitterwolf, S.
Gallus, Y. Hu, C. Oelschlaeger, N. Willenbacher, K. S.
Rabe, C. M. Niemeyer, Angew. Chem. Int. Ed. 2018, 57,
17028-17032.
[6] See Table 1 and 4 within: Y. Hu, Y.-H. He, Z. Guan,
Catal. Commun. 2010, 11, 656-659.
[7] See page S2 of the Supporting Information within: S.
Bahmanyar, K. N. Houk, H. J. Martin, B. List, J. Am.
Chem. Soc. 2003, 125, 2475-2479.
[20] a) H. A. Stefani, I. M. Costa, D. de O. Silva, Synthesis
2000, 1526-1528; b) A.-I Tsai, C.-P. Chuang,
Tetrahedron 2008, 64, 5098-5102.
[8] See Table 2 within: Z. Jiang, Z. Liang, X. Wu, Y. Lu,
[21] This catalyst is reported for the first time and its
synthesis is found in the Supporting Information
(Section 2).
Chem. Commun. 2006, 2801-2803.
[9] a) B. Rodríguez, T. Rantanen, C. Bolm, Angew. Chem.
Int. Ed. 2006, 45, 6924-6926; (b) See Table 5 within: B.
Rodríguez, A. Bruckmann, C. Bolm, Chem. Eur. J.
2007, 13, 4710-4722.
[22] For completeness, entry 3 (Table 1) is included with
catalyst 3c at a 5 mol% loading, but it is not noteworthy.
Note: Catalyst 3c is only sparingly soluble in EtOH.
Thus, at the required reaction concentration (0.30 M
solution of 1a in EtOH) for direct comparison with
entry 1 (Table 1), 3c was not capable of dissolving at a
25 mol% loading. 3c was significantly more soluble in
DMSO. But, at the required reaction concentration (0.5
M solution of 1a in DMSO) for direct comparison with
entry 2 (Table 1), 3c was not capable of dissolving at a
30 mol% loading.
[10] See Table 4 within: A. Karmakar, T. Maji, S.
Wittmann, O. Reiser, Chem. Eur. J. 2011, 17, 11024-
11029.
[11] a) Y. Jung, R. A. Marcus, J. Am. Chem. Soc., 2007,
129, 5492-5502; b) R. N. Butler, A. G. Coyne, Org.
Biomol. Chem. 2016, 14, 9945-9960; c) T. Kitanosono,
S. Kobayashi, Chem. Eur. J. 2020, 26, 9408-9429; d)
M. Cortes-Clerget, J. Yu, J. R. A. Kincaid, P. Walde, F.
Gallou, B. H. Lipshutz, Chem. Sci. 2021, 12, 4237-
4266.
[23] Tertiary amine (sp3 hybridized) catalysis is also
possible, however Hann and Lapworth described it as
proceeding less rapidly than under primary or
secondary amine catalysis, presumably because the
aldehyde is not activated. This may explain the lack of
tertiary amine catalyst applications in modern times,
see: A. C. O. Hann, A. Lapworth, J. Chem. Soc. 1904,
85, 46-56.
[12] a) Y. Hayashi, T. Sumiya, J. Takahashi, H. Gotoh, T.
Urushima, M. Shoji, Angew. Chem. Int. Ed. 2006, 45,
958-961; b) S. Aratake, T. Itoh, T. Okano, N. Nagae, T.
Sumiya, M. Shoji, Y. Hayashi, Chem. Eur. J. 2007, 13,
10246-10256; c) Y. Hayashi, Angew. Chem. Int. Ed.
2006, 45, 8103–8104.
[24] See page 343 of reference 3.
[13] J.-F. Zhao, L. He, J. Jiang, Z. Tang, L.-F. Cun, L.-Z.
[25] E. V. Dalessandro, H. P. Collin, L. G. L. Guimarꢀes,
M. S. Valle, J. R. Pliego Jr., J. Phys. Chem. B 2017,
121, 5300-5307.
Gong, Tetrahedron Lett. 2008, 49, 3372-3375.
[14] a) F. Giacalone, M. Gruttadauria, P. L. Meo, S. Riela,
R. Noto, Adv. Synth. Catal. 2008, 350, 2747–2760; b) F.
Giacalone, M. Gruttadauria, P. Agrigento, P. L. Meo, R.
Noto, Eur. J. Org. Chem. 2010, 5696-5704.
[26] E. Knoevenagel, Ber. Dtsch. Chem. Ges. 1898, 31,
2596-2619.
7
This article is protected by copyright. All rights reserved.