Organic Letters
Letter
reaction with carbon dioxide occurred to give isocyanate 29,
which further reacted to give dimeric urea species 30 (Scheme
5B).21,22
Paul D. Walker − School of Chemistry, University of Bristol,
Bristol BS8 1TS, United Kingdom
Angus N. M. Weir − School of Chemistry, University of Bristol,
Bristol BS8 1TS, United Kingdom
Rob Lavigne − Laboratory of Gene Technology, KU Leuven,
3001 Leuven, Belgium
Joleen Masschelein − Laboratory for Biomolecular Discovery
and Engineering, KU Leuven, 3001 Leuven, Belgium; VIB-KU
Leuven Center for Microbiology, Flanders Institute for
Biotechnology, 3001 Leuven, Belgium
The final fragment, acid 5, was prepared in two steps and
76% yield from ethyl (R)-3-hydroxybutanoate (see the
amine 6 was undertaken with no protection of the alcohol, thus
obviating the need for further protecting group manipulations.
Using COMU and iPr2NEt, hydroxy-amide 26 was isolated in
88% yield. Carbamoylation of 26 using trichloroacetyl
isocyanate was followed by concomitant hydrolysis of both
acetates with K2CO3 in MeOH. Oxidation of the resultant
alcohol with DMP provided ketone 27 in 93% yield over three
steps.
Thomas J. Simpson − School of Chemistry, University of Bristol,
Bristol BS8 1TS, United Kingdom
Paul R. Race − School of Biochemistry, University of Bristol,
Matthew P. Crump − School of Chemistry, University of Bristol,
The final key step of the total synthesis was the selective
reduction of (E)-enyne 27 to generate the required (E,Z)-
diene 4. In this case, commonly used hydrogenation with a
poisoned palladium catalyst was avoided due to concerns of
achieving the required chemoselectivity. Instead, 27 was
treated with zinc activated with copper and silver, which
gave the desired (E,Z)-diene 4 in 88% yield as a single isomer
Complete contact information is available at:
1
as determined by H NMR spectroscopy (J = 15 and 11 Hz,
Notes
respectively).23 The optical rotation of diene 4 prepared by
total synthesis was in excellent agreement with the reference
material obtained via protection of kalimantacin A 1 isolated
from cultures of P. fluorescens (Scheme 2). Finally, following
the previously established deprotection and ester hydrolysis
protocols (Scheme 2), we completed the first total synthesis of
kalimantacin A 1. The NMR spectral data and HPLC retention
time were in accord with those of an authentic sample of the
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support for this work was provided by the BBSRC
and EPSRC through the Bristol Centre for Synthetic Biology
(BB/L01386X/1), Bristol Chemical Synthesis Centre for
Doctoral Training for J.A.D. and P.D.W. (EP/L015366/1),
and doctoral training grants for F.M.B. and A.N.M.W.
In conclusion, herein we have reported the first total
synthesis of the PKS-NRPS-derived antibiotic natural product
kalimantacin A 1. The enantioselective and convergent
approach unites three fragments via Sonogashira and amide
couplings. This flexible synthetic strategy, combined with
recent insights into the binding of kalimantacin to FabI,8 will
enable SAR studies to be undertaken, thus paving the way for
the design of future selective antistaphylococcal drugs and their
development for clinical assessment. Additionally, this route
will be adapted for the synthesis of putative biosynthetic
intermediates to further probe the mechanisms of β-branch
incorporation in kalimantacin biosynthesis.
REFERENCES
■
(1) Tokunaga, T.; Kamigiri, K.; Orita, M.; Nishikawa, T.; Shimizu,
M.; Kaniwa, H. J. Antibiot. 1996, 49, 140.
(2) Kamigiri, K.; Suzuki, Y.; Shibazaki, M.; Morioka, M.; Suzuki, K.;
Tokunaga, T.; Setiawan, B.; Rantiatmodjo, R. M. J. Antibiot. 1996, 49,
136.
(3) Mattheus, W.; Gao, L.-J.; Herdewijn, P.; Landuyt, B.; Verhaegen,
J.; Masschelein, J.; Volckaert, G.; Lavigne, R. Chem. Biol. 2010, 17,
149.
(4) Thistlethwaite, I. R. G.; Bull, F. M.; Cui, C.; Walker, P. D.; Gao,
S.-S.; Wang, L.; Song, Z.; Masschelein, J.; Lavigne, R.; Crump, M. P.;
Race, P. R.; Simpson, T. J.; Willis, C. L. Chem. Sci. 2017, 8, 6196.
(5) Churkina, L. N.; Bidnenko, S. I.; Lopes dos Santos Santiago, G.;
Vaneechoutte, M.; Avdeeva, L. V.; Lutko, O. B.; Oserjanskaja, N. M.
BMC Res. Notes 2012, 5, 374.
ASSOCIATED CONTENT
* Supporting Information
■
sı
(6) Walker, P. D.; Williams, C.; Weir, A. N. M.; Wang, L.; Crosby, J.;
Race, P. R.; Simpson, T. J.; Willis, C. L.; Crump, M. P. Angew. Chem.,
Int. Ed. 2019, 58, 12446.
The Supporting Information is available free of charge at
(7) Mattheus, W.; Masschelein, J.; Gao, L.-J.; Herdewijn, P.;
Landuyt, B.; Volckaert, G.; Lavigne, R. Chem. Biol. 2010, 17, 1067.
(8) Fage, C. D.; Lathouwers, T.; Vanmeert, M.; Gao, L.-J.; Vrancken,
K.; Lammens, E.-M.; Weir, A. N. M.; Degroote, R.; Cuppens, H.;
Kosol, S.; Simpson, T. J.; Crump, M. P.; Willis, C. L.; Herdewijn, P.;
Experimental procedures and spectral data for all new
AUTHOR INFORMATION
Corresponding Author
■
́
Lescrinier, E.; Lavigne, R.; Anne, J.; Masschelein, J. Angew. Chem., Int.
Ed. 2020, 59, 10549.
Christine L. Willis − School of Chemistry, University of Bristol,
̌
(9) Rezanka, T.; Dembitsky, V. M. J. Nat. Prod. 2002, 65, 709.
́
(10) Bonini, C.; Chiummiento, L.; Videtta, V.; Colobert, F.; Solladie,
G. Synlett 2006, 2006, 2427.
(11) Forsyth, C. J.; Xu, J.; Nguyen, S. T.; Samdal, I. A.; Briggs, L. R.;
Rundberget, T.; Sandvik, M.; Miles, C. O. J. Am. Chem. Soc. 2006,
128, 15114.
(12) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734.
(13) Gilmore, K.; Alabugin, I. V. Chem. Rev. 2011, 111, 6513.
(14) Bailey, W. F.; Ovaska, T. V. J. Am. Chem. Soc. 1993, 115, 3080.
Authors
Jonathan A. Davies − School of Chemistry, University of Bristol,
Bristol BS8 1TS, United Kingdom
Freya M. Bull − School of Chemistry, University of Bristol,
Bristol BS8 1TS, United Kingdom
D
Org. Lett. XXXX, XXX, XXX−XXX