were also undertaken and the results are displayed in Table 2.
Excitingly, the yields are high and all the glycosylations proceeded
with excellent a-selectivity (only a-anomer) except for the acceptors
2i and 2k (entries 9 and 11, Table 2). The a-anomers were
identified by their 1H NMR coupling constants for anomeric
protons (J1,2 = 2.5–3.0 Hz). That is, the absence of TTBP during
the pre-activation glycosylations led to a totally reversed stereo-
chemistry outcome (cf. Table 1 and Table 2). The reversal of the
stereoselectivity in the absence of TTBP perhaps resulted from
in situ anomerisation of the b-glycoside under acidic condi-
tions.10,16 Another possible reason would be that the glycosylation
is a SN2-like process via the b-glycosyl triflate intermediate.15a In
terms of these results, it appears that the glycosylation stereo-
chemistry of donor 1 can be controllable and predictable based on
the pre-activation strategy, either a- or b-linked coupling products
towards multifarious glycosyl acceptors can be obtained simply by
the addition of hindered base or without base.
Notes and references
1 (a) R. A. Dwek, Chem. Rev., 1996, 96, 683; (b) J. Lehman,
Carbohydrates: Structure and Biology, Thieme, Stuttgart, Germany,
1998; (c) B. G. Davis, Chem. Rev., 2002, 102, 579; (d) B. Casu and
U. Lindahl, Adv. Carbohydr. Chem. Biochem., 2001, 57, 159.
2 J. Banoub, P. Boullanger and D. Lafont, Chem. Rev., 1992, 92, 1167.
3 A. V. Demchenko, Curr. Org. Chem., 2003, 7, 35.
4 (a) H. Paulsen, C. Kalar and W. Stenzel, Chem. Ber., 1978, 111, 2358;
(b) R. U. Lemieux and R. M. Ratcliffe, Can. J. Chem., 1979, 57,
1244.
5 (a) K. M. Koeller, M. E. B. Smith and C.-H. Wong, Bioorg. Med.
Chem. Lett., 2000, 8, 1017; (b) M. Martin-Lomas, M. Flores-Mosquera
and J. L. Chiara, Eur. J. Org. Chem., 2000, 1547; (c) M. Haller and
G.-J. Boons, J. Chem. Soc., Perkin Trans. 1, 2001, 814.
6 (a) H. A. Orgueira, A. Bartolozzi, P. Schell and P. H. Seeberger, Angew.
Chem., Int. Ed., 2002, 41, 2128; (b) H. A. Orgueira, A. Bartolozzi,
P. Schell, R. E. J. N. Litjens, E. R. Palmacci and P. H. Seeberger,
Chem.–Eur. J., 2003, 9, 140; (c) J. D. C. Codee, B. Stubba,
M. Schiattarella, H. S. Overkleeft, C. A. A. van Boeckel, J. H. Van
Boom and G. A. Van der Marel, J. Am. Chem. Soc., 2005, 127, 3767.
7 (a) D. Crich and S. Sun, J. Org. Chem., 1996, 61, 4506; (b) D. Crich
and S. Sun, J. Org. Chem., 1997, 62, 1198; (c) J. D. C. Code´e,
L. J. Van den Bos, R. E. J. N. Litjens, H. S. Overkleeft, J. H. Van Boom
and G. A. Van der Marel, Org. Lett., 2003, 5, 1947; (d) S. Yamago,
T. Yamada, T. Maruyama and J.-I. Yoshida, Angew. Chem., Int. Ed.,
2004, 43, 2145; (e) H. M. Nguyen, J. L. Poole and D. Y. Gin, Angew.
Chem., Int. Ed., 2001, 40, 414; (f) L. Huang, Z. Wang, X. Li, X.-S. Ye
and X. Huang, Carbohydr. Res., 2006, 341, 1669; (g) L. Huang and
X. Huang, Chem.–Eur. J., 2007, 13, 529; (h) Y. Wang, X.-S. Ye and
L.-H. Zhang, Org. Biomol. Chem., 2007, 5, 2189.
8 X. Huang, L. Huang, H. Wang and X.-S. Ye, Angew. Chem., Int. Ed.,
2004, 43, 5221.
9 (a) K. Benakli, C. Zha and R. J. Kerns, J. Am. Chem. Soc., 2001, 123,
9461; (b) R. J. Kerns, C. Zha, K. Benakli and Y.-Z. Liang, Tetrahedron
Lett., 2003, 44, 8069; (c) P. Wei and R. J. Kerns, J. Org. Chem., 2005,
70, 4195.
10 M. Boysen, E. Gemma, M. Lahmann and S. Oscarson, Chem.
Commun., 2005, 3044.
11 S. Manabe, K. Ishii and Y. Ito, J. Am. Chem. Soc., 2006, 128, 10666.
12 C. Wang, H. Wang, X. Huang, L.-H. Zhang and X.-S. Ye, Synlett,
2006, 17, 2846.
13 (a) H. C. van der Plas and A. Koudijs, Recl. Trav. Chim. Pays-Bas,
1978, 97, 159; (b) D. Crich, M. Smith, Q. Yao and J. Picione, Synthesis,
2001, 323.
14 Although we did not use TTBP in our routine pre-activation protocol,
we carried out the glycosylations in the presence of hindered base TTBP
for comparison with Kerns’ procedure.
15 (a) D. Crich and W. Cai, J. Org. Chem., 1999, 64, 4926; (b) D. Crich and
M. Smith, J. Am. Chem. Soc., 2001, 123, 9015.
16 K. D. Bodine, D. Y. Gin and M. S. Gin, J. Am. Chem. Soc., 2004, 126,
1638.
In summary, a new efficient strategy for both a- and
b-stereoselective glycosylations of glucosamine donors based on
pre-activation protocol was developed. By comparison with the
routine glycosylation operations, the pre-activation manner can
greatly influence the stereochemistry outcomes of glycosylations.
The 4,6-di-O-acetyl-N-acetyloxazolidinone protected donor 1 dis-
plays excellent a-selectivity for the couplings of a series of glycosyl
acceptors conducted by the BSM–Tf2O pre-activation protocol,
more importantly, the presence of hindered base TTBP leads to
totally reversed stereochemistry outcomes with excellent b-selec-
tivity towards glycosylations. Thus, by virtue of the BSM–Tf2O
pre-activation strategy, either a- or b-linked glucosamine-contain-
ing glycosides can be efficiently prepared by the use of 2,3-
oxazolidinone protected thioglycoside 1, by the addition of
hindered base or the absence of base. It seems that the controllable
and stereoselective glycosylations are realized by this protocol. It is
expected that the disclosed pre-activation methodology may be
widely applied to the assembly of either a- or b-linked 2-amino-2-
deoxy-D-glycopyranose-containing complex oligosaccharides with
important biological functions. Further extension of this protocol
to other sugars and the mechanistic understandings of stereo-
selectivity are currently under investigation.
This work was financially supported by the National Natural
Science Foundation of China, ‘‘973’’ and ‘‘863’’ grants from the
Ministry of Science and Technology of China.
This journal is ß The Royal Society of Chemistry 2008
Chem. Commun., 2008, 597–599 | 599