10.1002/chem.201805638
Chemistry - A European Journal
COMMUNICATION
A. Iterative amination
O
B. Intramolecular
amination
n OMOM
(n= 1-3)
a.
f.
Br
H
Ph
I
SO2ArF
Pd(OAc)2/P(t-Bu)3
(87 %)
Pd(OAc)2/P(t-Bu)3
Ph
7
b. NaBH4
c. SOCl2
d. 2a
(ArF = 3,5-(CF3)2C6H3)
g. h. i.
n OMOM
SO2ArF
SO2ArF
O
(61-85%, 3 steps)
(74%, 3 steps)
O
Ph
Ph
Ph
n NH2
SO2ArF
9m (n=1)
9n (n=2)
9o (n=3)
1k
1m (n=1), 67%
1n (n=2), 57%
1o (n=3), 59%
Ph
SO2ArF
Ph
N
j. CuCl, k. TsCl
Ph
1l
O
e. 2b, CuCl
NTs
N
N
NTs
NTs
(83%)
Ph
10m (77%)
Ph
Ph
Ph
10n (78%)
Ph
10o (56%)
8
[2]
[3]
Reviews: a) I. P. Beletskaya, A. V. Cheprakov, Organometallics 2012,
31, 7753–7808. b) P. Ruiz-Castillo, Buchwald, S. L. Chem. Rev. 2016,
116, 12564–12649. c) P. Subramanian, G. C. Rudolf, K. P. Kaliappan,
Chem Asian J. 2016, 11, 168–192. d) Y. Park, Y. Kim, S. Chang, Chem.
Rev. 2017, 117, 9247–9301.
Scheme 4. Synthetic Applications. Condition: (a) ArBr, Pd(OAc)2, P(t-Bu)3,
Cs2CO3, CPME, 125 ºC; (b) NaBH4, THF/MeOH, rt; (c) SOCl2, CH2Cl2, 50 ºC;
(d) 2a, MeCN, reflux; (e) 2b, CuCl, LiOt-Bu, dioxane, 120 ºC; (f) ArI, Pd(OAc)2,
P(t-Bu)3, Cs2CO3, CPME, 145 ºC; (g) HClaq, THF/MeOH, 70 ºC; (h)
phthalimide, PPh3, DIAD, THF/toluene, rt; (i) hydrazine, EtOH, 80 ºC; (j) CuCl,
LiOt-Bu, dioxane, 120 ºC; (k) TsCl, NaOH, CH2Cl2/H2O, rt.
a) A. S. Bhatnagar, A. Haüsler, K. Schieweck, M. Lang, R. Bowman, J.
Steroid Biochem. Mol. Biol. 1990, 37, 1021−1027. b) K.-J. Chang, G. C.
Rigdon, J. L. Howard, R. W. McNutt, J. Pharmacol. Exp. Ther. 1993,
267, 852−857. c) M. Kato, K. Komoda, A. Namera, Y. Sakai, S. Okada,
A. Yamada, K. Yokoyama, E. Migita, Y. Minobe, T. Tani, Chem. Pharm.
Bull. 1997, 45, 1767–1776. d) H. Hata, N. Toriu, M. Shimazawa,
Cardiovasc. Drug Rev. 2004, 22, 199–214.
In summary, we have developed a new synthetic method for
the preparation of benzhydryl amines by
a Cu-catalyzed
desulfonylative amination. This strategy represents a novel,
modular route for the preparation of biologically active
benzhydryl amines. The possibility of generating a reactive Cu-
carbene species from stable and readily accessible sulfone
derivatives, leading to the exploration of new types of
desulfonylative reactions will provide new routes to a variety of
complex molecules. Mechanistic investigations and the
development of new transformations of organosulfones are
ongoing in our laboratory.
[4]
[5]
Reviews: a) S. Gomez, J. Peter, T. Maschmeyer, Adv. Synth. Catal.
2002, 344, 1037–1057. b) A. F. Abdel-Magid, S. J. Mehrman, Org.
Process Res. Dev. 2006, 10, 971–1031.
For reviews of addition of organoboron reagents to imines, see: a) C. S.
Marques, A. J. Burke, ChemCatChem 2011, 3, 635–645. Selected
other examples, see: b) T. Hayashi, M. Ishigedani, J. Am. Chem. Soc.
2000, 122, 976–977. c) N. Hermanns, S. Dahmen, C. Bolm, S. Bräse,
Angew. Chem., Int. Ed. 2002, 41, 3692–3694; Angew. Chem. 2002,
114, 3844–3846. d) E. L. Gall, A. Pignon, T. Martens, Beilstein J. Org.
Chem. 2011, 7, 997–1002.
[6]
[7]
For syntheses of benzhydrylamines by use of organometallic reagents,
see: a) H. Böhme, P. Plappert, Chem. Ber. 1975, 108, 2827−2833. b) T.
Murai, F. Asai, J. Am. Chem. Soc. 2007, 129, 780−781. c) L.-G. Xie, D.
J. Dixon, Chem. Sci. 2017, 8, 7492−7497.
Acknowledgements
This work was supported by KAKENHI from JSPS (17K17805 to
M.N.). M.N. thanks the Ichihara International Scholarship
Foundation for financial support. JSPS and NU are
acknowledged for funding of this research through The World
Premier International Research Center Initiative (WPI) program.
a) G. I. McGrew, C. Stanciu, J. Zhang, P. J. Carroll, S. D. Dreher, P.
J. Walsh, Angew. Chem., Int. Ed. 2012, 51, 11510–11513; Angew.
Chem. 2012, 124, 11678–11681. b) M. Li, B. Yücel, J. Adrio, A.
Bellomo, P. J. Walsh, Chem. Sci. 2014, 5, 2383–2391. c) B. S. Kim, J.
Jiménez, F. Gao, P. J. Walsh, Org. Lett. 2015, 17, 5788–5791. d) G.
Gao, Y. Fu, M. Li, B. Wang, B. Zheng, S. Hou, P. J. Walsh, Adv. Synth.
Catal. 2017, 359, 2890–2894.
Conflict of Interest
[8]
[9]
A. Najib, K. Hirano, M. Miura, Org. Lett. 2017, 19, 2438–2441.
a) A. Hamze, B. Tréguier, J.-D. Brion, M. Alami, Org. Biomol.
Chem. 2011, 9, 6200–6204. b) J. Aziz, J.-D. Brion, A. Hamze, M. Alami,
Adv. Synth. Catal. 2013, 355, 2417–2429. c) L. Ling, J. Cao, J. Hu, H.
Zhang, RSC Adv. 2017, 7, 27974–27980.
The authors declare no conflict of interest
Keywords: Desulfonylative Amination • Cu Catalysis • Sulfone •
[10] For recent example of C–H amination, see: a) E. J. Yoo, S. Ma, T.-S.
Mei, K. S. L. Chan, J.-Q. Yu, J. Am. Chem. Soc. 2011, 133, 7652-7655.
b) Y. Zhang, B. Feng, C. Zhu, Org. Biomol. Chem. 2012, 10, 9137–
9141. b) H. Wang, G. Tang, X. Li, Angew. Chem. Int. Ed. 2015, 54,
13049–13052; Angew. Chem. 2015, 127, 13241–13244. c) A. Wang, N.
J. Venditto, W. Darcy, J. M. H. Emmert, Organometallics 2017, 36,
Cu-carbene • Benzhydrylamine
[1]
A. Ricci, Amino Group Chemistry: From Synthesis to the Life Sciences;
Wiley-VCH: Weinheim, 2008.
This article is protected by copyright. All rights reserved.