developed mimetics of the hydrophobic face of an R-helix
using the terphenyl scaffold. The tris-ortho-substituted ter-
phenyl can mimic the i, i + 4, and i + 7 residues of the
R-helix by adopting a staggered conformation that closely
reproduces the angular orientation of the peripheral func-
tionalities on the helical surface. Synthetic foldamers mim-
icking extended R-helices are accessible using benzoylurea
oligomers.9 Rebek recently reported the synthesis of small
libraries of low-molecular-weight R-helix mimetics having
a pyridazine ring in the central position.10 Such terphenyl-
type compounds effectively mimic the geometrical arrange-
ment of amino acid side chains along one face of a peptide
helix. However, most of the compounds lack chirality.
We describe here the synthesis of chiral piperazines
bearing hydrophobic side chains and their transition metal-
catalyzed assembly into helix mimetics of the terphenyl type.
The new compounds keep the relative orientation of the key
side chain functionalities as in terphenyl-type helix mimetics.
Figure 1 shows the structure of the most stable conformer11
We follow a previously reported general route13 to syn-
thesize enantiomerically pure monosubstituted piperazines
(Scheme 1) starting from chiral amino acids. The amino
Scheme 1. Synthesis of Protected Chiral Piperazines 4a-c
and 7a-b
esters 1 were treated with ClCH2COCl and NaHCO3 in a
mixture of water and benzene, which gave the products 2a-c
in high purity and good yields. The crude products were
subsequently reacted with benzylamine in methanol yielding
diketopiperazines 3a-c in good yield through a 1,5-cyclo-
condensation reaction.14 The diketopiperazines were reduced
by LiAlH4 to give monosubstituted piperazines 4a-c bearing
a Bn protecting group on nitrogen atom 4. A series of
deprotection and reprotection steps leads to piperazines 7a-b
which are Bn protected at nitrogen atom 1.
Figure 1. Orientation of residues in an idealized R-helix and in
substituted 1,4-dipiperazino benzene
of a methyl-substituted 1,4-dipiperazino benzene and its
relation to the R-helix structure. In addition, they are water
soluble and chiral, which will facilitate the study of stereo-
chemical effects in helix binding.12
(4) (a) Fairlie, D. P.; West, M. L.; Wong, A. K. Curr. Med. Chem. 1998,
5, 29-62. (b) Jain, R.; Ernst, J. T.; Kutzuki, O.; Park, H. S.; Hamilton, A.
D. Mol. DiVersity 2004, 8, 89-100. (c) Zutshi, R.; Brickner, M.;
Chmielewski, J. Curr. Opin. Chem. Biol. 1998, 2, 62-66. (d) Berg, T.
Angew. Chem., Int. Ed. 2003, 42, 2462-2481.
The synthesis of 1, 4-dipiperazino benzene starts from
2-bromo-5-iodotoluene (8) and (S)-1-benzyl-3-alkylpipera-
zine (4a-c). The preferred substitution of the iodo-substitu-
ent is expected in transition metal-catalyzed N-arylation
reactions. Several ligands have been introduced to promote
copper-catalyzed N-arylation of aliphatic secondary amines,
most notably N,N-diethylsalicylamide,15 amino acids,16 and
(5) Xuereb, H.; Maletic, M.; Glidersleeve, J.; Pelczer, I.; Kahne, D. J.
Am. Chem. Soc. 2000, 122, 1883-1884.
(6) Raguse, T. L.; Kai, J. R.; Gellman, S. H. J. Am. Chem. Soc. 2003,
125, 5592-5593.
(7) Kritzer, J. A.; Lear, J. D.; Hodsdon, M. E.; Schepartz, A. J. Am.
Chem. Soc. 2004, 126, 9468-9469.
(8) (a) Orner, B. P.; Ernst, J. T.; Hamilton, A. D. J. Am. Chem. Soc.
2001, 123, 5382-5383. (b) Yin, H.; Lee, G.; Sedey, K. A.; Kutzki, O.;
Park, H. S.; Orner, B. P.; Ernst, J. T.; Wang, H.-G.; Sebti, S. M.; Hamilton,
A. D. J. Am. Chem. Soc. 2005, 127, 10191-10196. (c) Yin, H.; Lee, G.;
Park, H. S.; Payne, G. A.; Rodriguez, J. M.; Sebti, S. M.; Hamilton, A. D.
Angew. Chem., Int. Ed. 2005, 44, 2704-2707. (d) Ernst, J. T.; Becerill, J.;
Park, H. S.; Yin, H.; Hamilton, A. D. Angew. Chem., Int. Ed. 2003, 42,
535-539. (e) Yin, H.; Hamilton, A. D. Bioorg. Med. Chem. Lett. 2004,
14, 1375-1379. (f) Davis, J. M.; Truong, A.; Hamilton, A. D. Org. Lett.
2005, 7, 5405-5408. (g) Kim, I. C.; Hamilton, A. D. Org. Lett. 2006, 8,
1751-1754.
(12) Protein helices derived from natural amino acids are chiral. Many
examples from medicinal chemistry show that the interaction of proteins
with chiral molecules significantly depends on their chirality: Chirality in
Drug Research; Francotte, E., Lindner, W., Eds.; Wiley: New York, 2007;
Vol. 33. Methods and Principles in Medicinal Chemistry; Mannhold,
R., Kubinyi, H., Folkers, G., Eds.; Wiley-VCH: Weinheim, 2006. 1,4-
Dipiperazino benzene helix mimetics with different chirality are therefore
expected to interact differently with helix-binding proteins.
(13) Liu, B.; Xu, G.-Y.; Yang, C.-H.; Wu, X.-H.; Xie, Y.-Y. Syn.
Commun. 2004, 34, 4111-4118.
(14) Daugan, A. C.-M. (ICOS Corp.). Tetracyclic derivs., process of
preparation and use. EP 0740668.
(15) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2003, 5, 793-796.
(16) (a) Ma, D.; Cai, Q.; Zhang, H. Org. Lett. 2003, 5, 2453-2455. (b)
Cai, Q.; Zhu, W.; Zhang, H.; Zhang, Y.; Ma, D. Synthesis 2005, 496-499.
(c) Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164 -5173. (d)
Application in drug synthesis: Egger, M.; Li, X.; Mu¨ller, C.; Bernhardt,
G.; Buschauer, A.; Ko¨nig, B. Eur. J. Org. Chem. 2007, 2643-2649.
(9) Rodriguez, J. M.; Hamilton, A. D. Angew. Chem., Int. Ed. 2007, 46,
8614-8617.
(10) Volonterio, A.; Molsan, L.; Rebek, J., Jr. Org. Lett. 2007, 9, 3733-
3736. (b) Biros, S. M.; Molsan, L.; Mann, E.; Carella, A.; Zhai, D.; Reed,
J. C.; Rebek, J., Jr. Bio. Med. Chem. Lett. 2007, 17, 4641-4645.
(11) Spartan ’06, Wavefunction, Inc. AM1 semi-empirical geometry
optimization.
1474
Org. Lett., Vol. 10, No. 7, 2008