reaction conditions.3 Recently, the development of organocata-
lytic asymmetric Michael addition reactions of nitro olefins has
received growing attention.4 Impressive progress has been made
in the development of metal-free bifunctional organic catalysts
for the enantioselective addition of aldehydes and ketones,5
malonate esters,6 and ketoesters7 to nitroalkenes. Nonetheless,
few successful organocatalysts have been demonstrated for the
enantioselective addition of 1,3-diketone compounds to nitro
olefins. Recently, Wang and co-workers have developed the first
highly enantioselective organocatalytic Michael addition of 2,4-
pentandione to aryl nitroalkenes.8 As part of our interest in
asymmetric organocatalysis,9 we want to describe a novel type
of bifunctional chiral amine-thiourea organocatalyst for promot-
ing the Michael reaction between 1,3-diketone compounds and
nitro olefins with good levels of enantioselectivity (up to 96%
ee). In addition, other types of 1,3-dicarbonyl compounds such
as malonate ester and ꢀ-ketoester were also briefly investigated.
In the past few years, chiral urea and thiourea derivatives
have emerged as new and efficient organocatalysts for various
enantioselective reactions.10 Among them, Takemoto’s amine-
thioureas,11 Jacobsen’s ureas/thioureas,12 and cinchona alkaloid-
Organocatalytic Enantioselective Michael
Addition of 2,4-Pentandione to Nitroalkenes
Promoted by Bifunctional Thioureas with Central
and Axial Chiral Elements
Fang-Zhi Peng, Zhi-Hui Shao,* Bao-Min Fan, He Song,
Gan-Peng Li, and Hong-Bin Zhang
Key Laboratory of Medicinal Chemistry for Natural
Resource (Yunnan UniVersity), Ministry of Education, School
of Chemical Science and Technology, Yunnan UniVersity,
Kunming, 650091, China
ReceiVed April 8, 2008
(3) For selected examples, see: (a) Evans, D. A.; Seidel, D. J. Am. Chem.
Soc. 2005, 127, 9958. (b) Watanabe, M.; Ikagawa, A.; Wang, H.; Murata, K.;
Ikariya, T. J. Am. Chem. Soc. 2004, 126, 11148. (c) Duursma, A.; Minnaard,
A. J.; Feringa, B. L. J. Am. Chem. Soc. 2003, 125, 3700. (d) Rimkus, A.; Sewald,
N. Org. Lett. 2003, 5, 79. (e) Alexakis, A.; Benhaim, C.; Rosset, S.; Humam,
M. J. Am. Chem. Soc. 2002, 124, 5262. (f) Luchaco-cullis, C. A.; Hoveyda,
A. H. J. Am. Chem. Soc. 2002, 124, 8192. (g) Hayashi, T.; Senda, T.; Ogasawara,
M. J. Am. Chem. Soc. 2000, 122, 10716. (h) Ji, J.; Barnes, D. M.; Zhang, J.;
King, S. A.; Wittenberger, S. J.; Morton, H. E. J. Am. Chem. Soc. 1999, 121,
10215.
(4) For a review, see: Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701.
(5) For selected examples, see: (a) Xiong, Y.; Wen, Y.; Wang, F.; Gao, B.;
Liu, X.; Huang, X.; Feng, X. AdV. Synth. Catal. 2007, 349, 2156. (b) Wei, S.;
Yalalov, D. A.; Tsogoeva, S. B.; Schmatz, S. Catal. Today 2007, 121, 151. (c)
Tsogoeva, S. B.; Wei, W. Chem. Commun. 2006, 1451. (d) Yalalov, D. A.;
Tsogoeva, S. B.; Schmatz, S. AdV. Synth. Catal. 2006, 348, 826. (e) Huang, H.;
Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128, 7170. (f) Lalonde, M. P.; Chen,
Y.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 6366. (g) Wang, W.; Wang,
J.; Li, H. Angew. Chem., Int. Ed. 2005, 43, 1369. (h) Hayashi, Y.; Gotoh, T.;
Hayasji, T.; Shoji, M. Angew. Chem., Int. Ed. 2005, 44, 4212. (i) Tsogoeva,
S. B.; Yalalov, D. A.; Hateley, M. J.; Weckbecker, C.; Huthmacher, K. Eur. J.
Org. Chem. 2005, 4995. (j) Andrey, O.; Alexakis, A.; Tomassini, A.; Bernar-
dinelli, G. AdV. Synth. Catal. 2004, 346, 1147. (k) Cobb, A. J. A.; Longbottom,
D. A. D.; Shaw, M.; Ley, S. V. Chem. Commun. 2004, 1808. (l) Ishii, T.; Fiujioka,
S.; Sekiguchi, Y.; Kotsuki, H. J. Am. Chem. Soc. 2004, 126, 9558. (m) Mase,
N.; Thayumanavan, R.; Tanaka, F.; Barbas, C. F., III Org. Lett. 2004, 6, 2527.
(n) Betancort, J. M.; Sakthivel, K.; Thayumanavan, R.; Tanaka, F.; Barbas, C. F.,
III Synthesis 2004, 1509. (o) Andrey, O.; Alexakis, A.; Bernardinelli, G. Org.
Lett. 2003, 5, 2559. (p) Enders, D.; Seki, A. Synlett 2002, 26. (q) List, B.;
Pojarliev, P.; Martin, H. J. Org. Lett. 2001, 3, 2423.
Two novel bifunctional amine-thiourea organocatalysts 1 and
2, which both bear central and axial chiral elements, have
been developed to promote enantioselective Michael reaction
between 1,3-dicarbonyl compounds and nitro olefins. The
catalyst 2 afforded the desired products with good levels of
enantioselectivity (up to 96% ee), showing clearly that two
chiral elements of 2 are matched, and enhance the stereo-
chemical control.
The nitroalkanes are important building blocks and intermedi-
ates in organic synthesis because the nitro group can be easily
transformed into other useful groups such as amines and
carbonyls.1 Michael addition of carbon-centered nucleophiles
to nitro olefins represents a direct and powerful approach to
chiral nitroalkanes. As a result, a considerable of effort has been
devoted to the development of catalytic enantioselective versions
of the process.2
(6) For selected examples, see: (a) Terada, M.; Ube, H.; Yaguchi, Y. J. Am.
Chem. Soc. 2006, 128, 1454. (b) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.;
Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119. (c) Li, Y.; Wang, H.; Tang,
L.; Deng, L. J. Am. Chem. Soc. 2004, 126, 9906. (d) Okino, T.; Hoashi, Y.;
Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672.
(7) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B. M.;
Deng, L. Angew. Chem., Int. Ed. 2005, 44, 105.
(8) (a) Wang, J.; Li, H.; Duan, W.; Zu, L.; Wang, W. Org. Lett. 2005, 7,
4713. (b) Cinchona alkaloids have also been employed for the process, but very
low enantioselectivities (26-29% ee) were achieved: (c) Brunner, H.; Kimel,
B. Monatsh. Chem. 1996, 127, 1063.
Although the catalytic asymmetric versions of this reaction
have been achieved, most required metal catalysts or strict
(9) Peng, F.; Shao, Z. J. Mol. Catal. A: Chem. 2008, 285, 1.
(1) For reviews, see: (a) Ono, N. The Nitro Group in Organic Synthesis;
Wiley-VCH: New York, 2001. (b) Ballini, R.; Petrini, M. Tetrahedron 2004,
60, 1017.
(10) For a review, see: (a) Connon, S. J. Chem. Eur. J. 2006, 12, 5418. For
selected references, see: (b) Schreiner, P. R.; Wittkopp, A. Org. Lett. 2002, 4,
217. (c) Wittkopp, A.; Schreiner, P. R. Chem. Eur. J. 2003, 8, 407. (d) Zhang,
Z.; Schreiner, P. R. Synthesis 2007, 2559.
(2) For reviews, see: (a) Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J.
Org. Chem. 2002, 1877. (b) Almasi, D.; Alonso, D. A.; Najera, C. Tetrahedron:
Asymmetry 2007, 18, 299. (c) Vicario, J. L.; Badia, D.; Carrillo, L. Synthesis
2007, 2065.
(11) For reviews, see: (a) Takemoto, Y.; Miyabe, H. Chimia 2007, 61, 269.
(b) Takemoto, Y. J. Synth. Org. Chem. Jpn. 2006, 64, 1139. (c) Takemoto, Y.
Org. Biomol. Chem. 2005, 3, 4299.
5202 J. Org. Chem. 2008, 73, 5202–5205
10.1021/jo800774m CCC: $40.75 2008 American Chemical Society
Published on Web 06/11/2008