Job/Unit: O21042
/KAP1
Date: 25-09-12 16:26:22
Pages: 6
D. McLeod, J. McNulty
SHORT COMMUNICATION
13C NMR spectra, LC–MS (MS) spectra, UV/Vis spectra, and fluo-
rescence spectra.
olefination in a more benign plant. The reaction of 1a and
2a was investigated in the pea plant Pisum sativum, an in-
nocuous vehicle known for primary amino acid production
and nitrogen-free secondary products.[20] Seeds of P. sati-
vum are readily available, and the plant is rapidly germi-
nated in soil or under hydroponic conditions. Separate in-
jection of compounds 1a and 2a into rapidly growing seed-
lings of P. sativum and harvesting of the plant tissue after
8 d followed by LC–MS analysis (see above) allowed un-
equivocal identification of stilbene 3a in stem and leaf tis-
sue.
Acknowledgments
We thank Natural Sciences and Engineering Research Council
(NSERC) of Canada and Cytec Canada for financial support of
this work. We thank Jarkko Ylanko and Dr. David Andrews for
deconvolution microscopic analysis and Dr. Kirk Green for LC–
MS analysis.
The synthesis of precursors 1a and 2a (Scheme 2) is rapid
and its modular nature should enable application to analo-
gous reaction partners to connect functional units of inter-
est and to customize the properties of the chromophore.
The initial process connects an amine (here morpholine) to
a carboxylic acid (here acetate) through amide bonds by an
in situ and in vivo constructed reporter stilbene linkage.
The technology to construct such a molecularly defined
chromophore/fluorophore directly, while conjugating two
differentially functionalized entities, provides a new ap-
proach that is envisaged to be widely useful in installing
such a “reporter” in these systems, including in living tis-
sues. Stilbene 3a was chosen as a proof-of-principle for the
physiological olefination process and not designed as a tis-
sue-specific target. It is not yet known if the olefination
reaction occurs within the plant cell or if it is promoted by
endogenous amines in the extracellular media. Nonetheless,
it has now been demonstrated that Wittig-type olefination
reactions are compatible under mild physiological condi-
tions. The mild conditions, simplicity, and efficiency of the
chemical process (Scheme 3, conditions A) validate the
click-stilbene paradigm, whereas the applicability to physio-
logical conditions (Scheme 3, conditions B) opens ole-
fination chemistry to new and exciting applications.
[1] a) C. W. Tornoe, C. Christensen, M. Meldal, J. Org. Chem.
2002, 67, 3057–3064; b) V. V. Rostovtsev, L. G. Green, V. V.
Fokin, K. B. Sharpless, Angew. Chem. 2002, 114, 2708; Angew.
Chem. Int. Ed. 2002, 41, 2596–2599; c) H. C. Kolb, M. G. Finn,
K. B. Sharpless, Angew. Chem. 2001, 113, 2056–2075; Angew.
Chem. Int. Ed. 2001, 40, 2004–2021.
[2] An entire thematic review issue on bioorthogonal chemistry
appeared recently: a) Acc. Chem. Res. 2011, vol. 44, issue 9. for
a selection of other contributions, see: b) I. S. Carrico, B. L.
Carlson, C. R. Bertozzi, Nature Chem. Biol. 2007, 3, 321–322;
c) E. M. Sletten, C. R. Bertozzi, Acc. Chem. Res. 2011, 44, 666–
676; d) M. D. Best, M. M. Rowland, H. E. Bostic, Acc. Chem.
Res. 2011, 44, 686–698; e) K. A. Winans, C. R. Bertozzi, Chem.
Biol. 1998, 5, R313; f) K. J. Yarema, L. K. Mahal, R. E.
Bruehl, E. C. Rodriguez, C. R. Bertozzi, J. Biol. Chem. 1998,
273, 31168; g) E. Saxon, C. R. Bertozzi, Science 2000, 287,
2007; h) M. L. Blackman, M. Royzen, J. M. Fox, J. Am. Chem.
Soc. 2008, 130, 13518–13519; i) H. Stöckmann, A. A. Neves,
S. Stairs, K. M. Brindle, F. J. Leeper, Org. Biomol. Chem. 2011,
9, 7303–7305; j) Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin,
K. B. Sharpless, M. G. Finn, J. Am. Chem. Soc. 2003, 125,
3192; k) R. Breinbauer, M. Kohn, ChemBioChem 2003, 4,
1147; l) V. D. Bock, H. Hiemstra, J. H. van Maarseveen, Eur.
J. Org. Chem. 2005, 51; m) A. Wang, N. W. Nairn, R. S. John-
son, D. A. Tirrell, K. Grabstein, ChemBioChem 2008, 9, 324–
330; n) F. Amblard, J. H. Cho, R. F. Schinazi, Chem. Rev. 2009,
109, 4207–4220; o) T. Fekner, X. Li, M. M. Lee, M. K. Chan,
Angew. Chem. 2009, 121, 1661–1663; Angew. Chem. Int. Ed.
2009, 48, 1633–1635; p) L. Ackermann, H. K. Potukuchi, Org.
Biomol. Chem. 2010, 8, 4503–4513.
[3] a) M. Juricek, P. H. J. Kouwer, A. E. Rowan, Chem. Commun.
2011, 47, 8740–8749; b) W. R. Algar, D. E. Prasuhn, M. H. Ste-
wart, T. L. Jennings, J. B. Blanco-Canosa, P. E. Dawson, I. L.
Medintz, Bioconjugate Chem. 2011, 22, 825–858; c) A. Bernar-
din, A. Cazet, L. Guyon, P. Delannoy, F. Vinet, D. Bonnaffé, I.
Texier, Bioconjugate Chem. 2010, 21, 583–588; d) J. M. Casas-
Solvas, E. Ortiz-Salmerón, I. Fernández, L. García-Fuentes, F.
Santoyo-González, A. Vargas-Berenguel, Chem. Eur. J. 2009,
15, 8146–8162; e) J. F. Lutz, Angew. Chem. 2007, 119, 1036–
1043; Angew. Chem. Int. Ed. 2007, 46, 1018–1025.
Conclusions
In summary, we report the synthesis of useful dual-func-
tionalized donor–acceptor reporter stilbenes under ex-
tremely mild chemical organocatalytic olefination condi-
tions and, secondly, under physiological conditions within
plant tissues. The reporter molecules can be isolated in large
quantities by using the chemical technique and can be read-
ily identified at low concentrations by fluorescence or LC– [4] a) F. Heaney, Eur. J. Org. Chem. 2012, 3043–3058; b) J. N. Stan-
MS–MS. The unprecedented chemoselectivity demon-
strated here opens a new paradigm in olefination chemistry,
extending the applicability to bioorthogonal applications.
nard, B. L. Horecker, J. Biol. Chem. 1948, 172, 599; c) E. M.
Sletten, C. R. Bertozzi, Angew. Chem. 2009, 121, 7108–7133;
Angew. Chem. Int. Ed. 2009, 48, 6974–6998; d) C. E. Hoyle,
C. N. Bowman, Angew. Chem. 2010, 122, 1584–1617; Angew.
The success of the chemical and bioorthogonal processes
will suggest many applications for conjugation/detection in
materials, biochemicals, and hybrid areas. Olefination
chemistry continues to illuminate with new relevance a
quarter century beyond Wittig’s passing.[21] Further refine-
ments and applications towards the synthesis of function-
alized materials and intracellularly targeted conjugates is
now under active investigation in our laboratory.
Chem. Int. Ed. 2010, 49, 1540–1573; e) Y. Singh, N. Spinelli,
E. Defrancq, Curr. Org. Chem. 2008, 12, 263–290; f) G. Franc,
A. K. Kakkar, Chem. Eur. J. 2009, 15, 5630–5639.
[5] a) N. J. Agard, J. A. Prescher, C. R. Bertozzi, J. Am. Chem.
Soc. 2004, 126, 15046–15047; b) X. Ning, R. P. Temming, J.
Dommerholt, J. Guo, D. B. Ania, M. F. Debets, M. A. Wolfert,
G.-J. Boons, F. L. van Delft, Angew. Chem. 2010, 122, 3129–
3132; Angew. Chem. Int. Ed. 2010, 49, 3065; c) J. M. Baskin,
J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang, I. A.
Miller, A. Lo, J. A. Codelli, C. R. Bertozzi, Proc. Natl. Acad.
Sci. USA 2007, 104, 16793; d) A. B. Neef, C. Schultz, Angew.
Chem. 2009, 121, 1526–1529; Angew. Chem. Int. Ed. 2009, 48,
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, characterization data, 1H NMR and
4
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0