S. Enthaler et al. / Tetrahedron 64 (2008) 3867e3876
3875
35.9. IR (Nujol): 3182 w; 2723 w; 1598 m; 1585 m; 1496 m;
1459 s; 1377 s; 1291 m; 1250 s; 1207 w; 1170 w; 1155 w;
1118 m; 1073 w; 1050 w; 1020 w; 1001 w; 879 w; 849 w;
779 w; 746 s; 723 m; 693 m; 639 w; 511 w; 413 w. MS
(EI): m/z (%)¼226 ([Mþ], 19); 133 (100); 115 (21); 103
(21); 94 (61); 77 (29); 65 (11). HRMS calculated for
C15H14O2: 226.09883; found: 226.099031.
PC with GPES 4.9 software. A three-electrode arrangement
with a platinum microelectrode (25 mm diameter) as the work-
ing electrode, a saturated calomel electrode (SCE) as reference
electrode and a platinum counter electrode (16 mm2 area) was
used. All potentials in the following are cited against SCE. All
measurements were carried out in 2-PrOH at room tempera-
ture. As supporting electrolyte we used 0.1 mol/L tetra-n-butyl-
ammonium tetrafluoraborate. Due to the low solubility at
room temperature all solutions of porphyrins with FeCl2
were saturated solutions. For some porphyrins (e.g., com-
pound 3) solubility was too low to see any currents. Revers-
ibility was determined by plotting E versus log[(IaꢀI)/IꢀIc]
for the nearly linear range of the forward scan and determining
the slope for the quasi-reversible electrode reactions. Anodic
diffusion current (Ia) and cathodic diffusion current (Ic) are
determined from the results of a sigmoidal fit with Microcal
Origin 7.5.
3.3.6. 3,3-Dimethyl-1-phenoxybutan-2-ol (15a)
1
Mp¼31e33 ꢁC (colourless crystals). H NMR (300 MHz,
CDCl3): d¼7.33e7.24 (m, 2H); 7.00e6.88 (m, 3H); 4.14 (dd,
1H, J¼9.23, 2.45 Hz, CH); 3.86 (m, 2H, CH2); 2.35 (br, 1H,
OH); 1.01 (s, 9H, C(CH3)3). 13C NMR (75.5 MHz, CDCl3):
d¼158.6; 129.5; 121.1; 114.6; 77.2; 69.3; 33.5; 26.0. IR
(KBr): 3272 br; 3035 w; 2954 s; 2876 m; 1601 m; 1586 m;
1499 s; 1459 m; 1393 w; 1366 m; 1338 m; 1296 m; 1245 s;
1190 w; 1174 m; 1152 w; 1095 m; 1079 m; 1044 m; 1020 m;
1020 m; 1005 m; 992 w; 942 w; 926 m; 902 m; 895 m; 821 w;
754 s; 692 m; 598 w; 572 w; 513 m; 402 w. MS (EI): m/z
(%)¼194 ([Mþ], 26); 119 (10); 108 (63); 94 (100); 87 (19); 77
(22); 69 (14); 57 (24); 41 (17). HRMS calculated for
C12H18O2: 194.13013; found: 194.129870.
Acknowledgements
We thank Mrs. S. Buchholz and Dr. C. Fischer (both Leib-
niz-Institut fur Katalyse e.V. an der Universitat Rostock) for
¨
¨
excellent analytical assistance and Prof. Jeroschewski for gen-
eral discussions. Generous financial support from the state of
Mecklenburg-Western Pomerania and the BMBF as well as
the Deutsche Forschungsgemeinschaft (Leibniz-price) are
gratefully acknowledged.
3.3.7. 2-Phenoxy-1-(40-methylphenyl)ethanol (16a)
1
Mp¼50e51 ꢁC (colourless crystals). H NMR (300 MHz,
CDCl3): d¼7.34e7.14 (m, 6H); 6.98e6.85 (m, 3H); 5.05
(dd, 1H, J¼8.64, 3.36 Hz, CH); 4.04e3.97 (m, 2H, CH2);
2.87 (br, 1H, OH); 2.34 (s, 3H, CH3). 13C NMR (75.5 MHz,
CDCl3): d¼158.3; 137.8; 136.7; 129.5; 129.2; 126.2; 121.1;
114.5; 73.2; 72.3; 21.1. IR (KBr): 3297 br; 3027 w; 2912 w;
2880 w; 1932 w; 1599 m; 1586 m; 1514 m; 1498 s; 1460
m; 1388 m; 1340 m; 1293 m; 1250 s; 1195 m; 1180 m;
1172 m; 1151 w; 1090 s; 1045 m; 1021 m; 995 w; 975 w;
943 w; 916 m; 886 w; 868 m; 838 w; 815 m; 756 s; 716 w;
693 m; 616 w; 597 m; 575 w; 537 m; 513 m; 487 w; 464
w; 403 w. MS (EI): m/z (%)¼228 ([Mþ], 6); 121 (100); 108
(68); 105 (15); 65 (11). HRMS calculated for C15H16O2:
228.11448; found: 228.114429.
References and notes
1. (a) Asymmetric Catalysis in Organic Synthesis; Noyori, R., Ed.; Wiley:
New York, NY, 1994; (b) Applied Homogeneous Catalysis with Organo-
metallic Compounds; Cornils, B., Herrmann, W. A., Eds.; Wiley-VCH:
Weinheim, 1996; (c) Comprehensive Asymmetric Catalysis; Jacobsen,
E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; (d)
Kitamura, M.; Noyori, R. Ruthenium in Organic Synthesis; Murahashi,
S.-I., Ed.; Wiley-VCH: Weinheim, 2004; (e) Transition Metals for
Organic Synthesis, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH:
Weinheim, 2004; (f) Modern Oxidation Methods; Backvall, J.-E., Ed.;
¨
Wiley-VCH: Weinheim, 2004.
2. (a) Zassinovich, G.; Mestroni, G.; Gladiali, S. Chem. Rev. 1992, 51,
1051e1069; (b) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30,
97e102; (c) Gladiali, S.; Mestroni, G. Transition Metals for Organic
Synthesis, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim,
2004; pp 145e166; (d) Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler,
F.; Studer, M. Adv. Synth. Catal. 2003, 345, 103e151; (e) Gladiali, S.;
Alberico, E. Chem. Soc. Rev. 2006, 35, 226e236; (f) Samec, J. S. M.;
3.3.8. 2-Phenoxy-1-(40-methoxyphenyl)ethanol (17a)
Yellow oil. 1H NMR (300 MHz, CDCl3): d¼7.32e7.15 (m,
4H); 6.92e6.77 (m, 5H); 4.98 (dd, 1H, J¼8.67, 3.39 Hz, CH);
4.00e3.87 (m, 2H, CH2); 3.73 (s, 3H, CH3); 2.77 (br, 1H). 13
C
NMR (75.5 MHz, CDCl3): d¼159.4; 158.3; 131.7; 129.5;
127.5; 121.2; 114.6; 113.9; 73.2; 72.1; 55.3. IR (KBr): 3440
br; 3072 w; 3044 w; 2999 w; 2929 m; 2831 w; 1728 w;
1612 m; 1600 m; 1587 m; 1514 s; 1497 s; 1456 m; 1303 m;
1245 s; 1174 m; 1154 w; 1114 w; 1080 m; 1036 m; 912 w;
867 w; 832 m; 755 m; 692 m; 639 w; 596 w; 552 w; 511 w.
MS (EI): m/z (%)¼244 ([Mþ], 2); 137 (100); 121 (10); 108
(23); 94 (12); 77 (21). HRMS calculated for C15H16O3:
244.10940; found: 244.109218.
Backvall, J.-E.; Andersson, P. G.; Brandt, P. Chem. Soc. Rev. 2006, 35,
¨
237e248.
3. Selected recent examples of transfer hydrogenations: (a) Schlatter, A.;
Kundu, M. K.; Woggon, W.-D. Angew. Chem., Int. Ed. 2004, 43, 6731e
6734; (b) Xue, D.; Chen, Y.-C.; Cui, X.; Wang, Q.-W.; Zhu, J.; Deng,
J.-G. J. Org. Chem. 2005, 70, 3584e3591; (c) Wu, X.; Li, X.; King, F.;
Xiao, J. Angew. Chem., Int. Ed. 2005, 44, 3407e3411; (d) Hayes,
A. M.; Morris, D. J.; Clarkson, G. J.; Wills, M. J. Am. Chem. Soc.
2005, 127, 7318e7319; (e) Baratta, W.; Chelucci, G.; Gladiali, S.; Siega,
K.; Toniutti, M.; Zanette, M.; Zangrando, E.; Rigo, P. Angew. Chem., Int.
Ed. 2005, 44, 6214e6219; (f) Enthaler, S.; Jackstell, R.; Hagemann, B.;
Junge, K.; Erre, G.; Beller, M. J. Organomet. Chem. 2006, 691, 4652e
4659; (g) Enthaler, S.; Hagemann, B.; Bhor, S.; Anilkumar, G.; Tse,
M. K.; Bitterlich, B.; Junge, K.; Erre, G.; Beller, M. Adv. Synth. Catal.
2007, 349, 853e860.
3.4. Electrochemical measurements
The electrochemical workstation is composed of an Auto-
lab PGSTAT 10 potentiostat from ECO Chemie and a P-450