lent examples based on the direct sp3 C-H bond activation
adjacent to a nitrogen atom for the C-C bond formations were
reported.4,5 Very recently, we have also developed an inexpen-
sive and effective CuBr/tBuOOH system for the amidation of
unactivated sp3 C-H bonds adjacent to a nitrogen atom.6
Propargylamines are major skeletons7 or versatile and key
intermediates8 for the synthesis of many biologically active
compounds, such as ꢀ-lactams, oxotremorine analogues, con-
firmationally restricted peptides, isosteres, and natural products
Copper-Catalyzed Coupling of Tertiary Aliphatic
Amines with Terminal Alkynes to
Propargylamines via C-H Activation
Mingyu Niu,† Zhengming Yin,‡ Hua Fu,*,† Yuyang Jiang,†,§
and Yufen Zhao†
Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology (Ministry of Education), Department of
Chemistry, Tsinghua UniVersity, Beijing 100084, People’s
Republic of China, Department of Chemistry, Key
Laboratory of Chemical Biology and Organic Chemistry
(Henan ProVince), Zhengzhou UniVersity,
Zhengzhou 450052, Peopple’s Republic of China, and Key
Laboratory of Chemical Biology (Guangdong ProVince),
Graduate School of Shenzhen, Tsinghua UniVersity,
Shenzhen 518057, People’s Republic of China
(2) For recent reviews on the reactions of C-H bonds, see: (a) Ritleng, V.;
Sirlin, C.; Pfeffer, M. Chem. ReV. 2002, 102, 1731. (b) Dyker, G. Angew. Chem.,
Int. Ed. 1999, 38, 1698. (c) Naota, T.; Takaya, H.; Murahashi, S. I. Chem. ReV.
1998, 98, 2599. (d) Li, C.-J.; Li; Z., Pure Appl. Chem. 2006, 78, 935 For
representative examples, see: (e) Chatani, N.; Asaumi, T.; Yorimitsu, S.; Ikeda,
T.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2001, 123, 10935–10941. (f)
Goossen, L. J. Angew. Chem., Int. Ed. 2002, 41, 3775. (g) Arndtsen, B. A.;
Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154.
(h) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science 2000, 287,
1995. (i) Goldman, A. S. Nature 1993, 366, 514. (j) Crabtree, R. H. J. Organomet.
Chem. 2004, 689, 4083. (k) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res.
2001, 34, 633. (l) Fokin, A. A.; Schreiner, P. R. Chem. ReV. 2002, 102, 1551.
(m) Ackermann, L.; Althammer, A.; Born, R. Angew. Chem., Int. Ed. 2006, 45,
2619.
ReceiVed February 3, 2008
(3) (a) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172. (b) Murahashi,
S.-I.; Komiya, N.; Terai, H. Angew. Chem., Int. Ed. 2005, 44, 6931. (c) Chen,
X.; Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006,
128, 78. (d) Chen, X.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128,
12634. (e) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.;
Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510. (f) Daugulis, O.;
Zaitsev, V. G. Angew. Chem., Int. Ed. 2005, 44, 4046. (g) Zaitsev, V. G.;
Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154. (h) Chiong,
H. A.; Daugulis, O. Org. Lett. 2007, 9, 1449. (i) Li, Z.; Li, C.-J. J. Am. Chem.
Soc. 2006, 128, 56. (j) Li, Z.; Cao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2007,
46, 6505. (k) Zhang, Y.; Li, C.-J. Eur. J. Org. Chem. 2007, 4654.
We have developed a convenient and efficient method for
coupling of tertiary aliphatic amines with terminal alkynes
to propargylamines via C-H activation. The protocol uses
CuBr as the catalyst, NBS as the free radical initiator, CH3CN
as the solvent, and the alkynylation was selectively performed
on the methyl of tertiary aliphatic amines at 80 °C. This is
an economical and practical method for the synthesis of
propargylamines.
(4) (a) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc.
2003, 125, 15312. (b) Doye, S. Angew. Chem., Int. Ed. 2001, 40, 3351. (c)
Chatani, N.; Asaumi, T.; Yorimitsu, S.; Ikeda, T.; Kakiuchi, F.; Murai, S. J. Am.
Chem. Soc. 2001, 123, 10935. (d) Chatani, N.; Asaumi, T.; Ikeda, T.; Yorimitsu,
S.; Ishii, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2000, 122, 12882. (e)
Jun, C.-H.; Hwang, D.-C.; Na, S.-J. Chem. Commun. 1998, 1405. (f) Sakaguchi,
S.; Kubo, T.; Ishii, Y. Angew. Chem., Int. Ed. 2001, 40, 2534. (g) Sezen, B.;
Sames, D. J. Am. Chem. Soc. 2005, 127, 5284. (h) Sezen, B.; Sames, D. J. Am.
Chem. Soc. 2004, 126, 13244. (i) DeBoef, B.; Pastine, S. J.; Sames, D. J. Am.
Chem. Soc. 2004, 126, 6556. (j) Davies, H. M. L.; Jin, Q. Org. Lett. 2004, 6,
1769. (k) Davies, H. M. L.; Venkataramani, C.; Hansen, T.; Hopper, D. W.
J. Am. Chem. Soc. 2003, 125, 6462. (l) Yoshimitsu, T.; Arano, Y.; Nagaoka, H.
J. Am. Chem. Soc. 2005, 127, 11610. (m) Maruyama, T.; Suga, S.; Yoshida,
J.-I. J. Am. Chem. Soc. 2005, 127, 7324. (n) Suga, S.; Nishida, T.; Yamada, D.;
Nagaki, A.; Yoshida, J.-I. J. Am. Chem. Soc. 2004, 126, 14338. (o) Suga, S.;
Suzuki, S.; Yoshida, J.-I. J. Am. Chem. Soc. 2002, 124, 30. (p) Yoshida, J.-I.;
Suga, S.; Suzuki, S.; Kinomura, N.; Yamamoto, A.; Fujiwara, K. J. Am. Chem.
Soc. 1999, 121, 9546. (q) Yi, C. S.; Yun, S. Y.; Guzei, I. A. Organometallics
2004, 23, 5392.
Direct and selective conversion of carbon-hydrogen bonds
to new bonds (such as C-C, C-O, and C-N) is an important
and long-standing goal in chemistry, and this process has great
potential in synthesis because it avoids the preparation of
functional groups and makes synthetic schemes shorter and more
efficient.1 Recently, great progress has been achieved on the
direct transformation of C-H bonds into C-C bonds without
prefunctionalizations.2,3 The synthesis of these nitrogen-contain-
ing compounds widely present in nature has attracted much
attention in industrial and academic research because of their
biological and pharmaceutical properties. Recently, some excel-
(5) (a) Campos, K. R. Chem. Soc. ReV. 2007, 36, 1069. and references cited
therein. (b) Li, Z.; Bohle, D. S.; Li, C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006,
103, 8928. (c) Zhang, Y.; Li, C.-J. J. Am. Chem. Soc. 2006, 128, 4242. (d) Zhang,
Y.; Li, C.-J. Angew. Chem., Int. Ed. 2006, 45, 1949. (e) Li, Z.; Li, C.-J. Eur. J.
Org. Chem. 2005, 3173. (f) Li, Z.; Li, C.-J. Eur. J. Org. Chem. 2005, 3173. (g)
Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968. (h) Li, Z.; Li, C.-J. J. Am.
Chem. Soc. 2005, 127, 3672. (i) Murahashi, S.-I.; Komiya, N.; Terai, H. Angew.
Chem., Int. Ed. 2005, 44, 6931.
(6) Zhang, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2007, 9, 3813.
(7) (a) Boulton, A. A.; Davis, B. A.; Durden, D. A.; Dyck, L. E.; Juorio,
A. V.; Li, X. M.; Paterson, I. A.; Yu, P. H. Drug DeV. Res. 1997, 42, 150. (b)
Huffman, M. A.; Yasuda, N.; DeCamp, A. E.; Grabowski, E. J. J. J. Org. Chem.
1995, 60, 1590. (c) Konishi, M.; Ohkuma, H.; Tsuno, T.; Oki, T.; VanDuyne,
G. D.; Clardy, J. J. Am. Chem. Soc. 1990, 112, 3715.
* To whom correspondence should be addressed. Fax: 86-10-62781695.
† Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education).
‡ Key Laboratory of Chemical Biology (Henan Province).
§ Key Laboratory of Chemical Biology (Guangdong Province).
(1) (a) Godula, K.; Sames, D. Science 2006, 312, 67. (b) Bergman, R. G.
Nature 2007, 446, 391. (c) Cho, J.-Y.; Tse, M. K.; Holmes; Maleczka, R. E, Jr.;
Smith, M. R., III Science 2002, 295, 305. (d) Chen, H.; Schlecht, S.; Semple,
T. C.; Hartwig, J. F. Science 2000, 287, 1995. (e) Labinger, J. A.; Bercaw, J. E.
Nature 2002, 417, 507.
(8) (a) Miura, M.; Enna, M.; Okuro, K.; Nomura, M. J. Org. Chem. 1995,
60, 4999. (b) Jenmalm, A.; Berts, W.; Li, Y. L.; Luthman, K.; Csoregh, I.;
Hacksell, U. J. Org. Chem. 1994, 59, 1139. (c) Nilsson, B.; Vargas, H. M.;
Ringdahl, B.; Hacksell, U. J. Med. Chem. Soc. 1992, 35, 285. (d) Nakamura,
H.; Kamakura, T.; Ishikura, M.; Biellmann, J.-F. J. Am. Chem. Soc. 2004, 126,
5958.
10.1021/jo800279j CCC: $40.75
Published on Web 04/12/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 3961–3963 3961