2498
C. Radanyi et al. / Bioorg. Med. Chem. Lett. 18 (2008) 2495–2498
Table 1. Anti-proliferative activity of the most active inhibitors
Acknowledgements
a
Compound
IC50 (lM)
The authors gratefully acknowledge support of this pro-
ject by the Ligue Nationale contre le Cancer (grants to
`
J.-M. R). C.B. is the recipient of the Ministere de l’Edu-
cation Nationale de la Recherche et de la Technologie.
´ ´ ´
GLB is a recipient of the Societe de Chimie Therapeu-
tique (SERVIER group).
5d
5g
40 ( 6)
35 ( 3)
50 ( 5)
70 ( 4)
75 ( 4)
45 ( 8)
260 ( 15)
5i
5e
5h
4TCNA
Nvb
a Values are means of three experiments, carried out in sextuplate and
standard deviation is given in parentheses.
References and notes
1. For reviews on structure and mode action of coumarins on
DNA gyrase, see: (a) Reece, R. J.; Maxwell, A. Crit. Rev.
Biochem. Mol. Biol. 1991, 26, 335; (b) Maxwell, A. Trends
Microbiol. 1997, 5, 102; (c) Lewis, R. J.; Singh, O. M. P.;
Smith, C. V.; Skarzynski, T.; Maxwell, A.; Wonacott, A.
J.; Wigley, D. B. EMBO J. 1996, 15, 1412.
of series 5 having a tosyl substituent on the C-4 position
of the coumarin nucleus, behave as stronger inhibitors
of ER-mediated transcription, except compound 5a, as
compared to Nvb.
2. Marcu, M. G.; Schulte, T. W.; Neckers, L. J. Natl. Cancer
Inst. 2000, 92, 242.
The in vitro activity of these derivatives was further
evaluated by their growth-inhibitory potency in MCF-
7 cells. The quantification of cell survival in MCF-7 cells
(initially 5000 cells/well of a 96-well plate, exposed after
24 h to serial dilution of the different analogues for 72 h)
was established by using the 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide assay (MTT, Sig-
ma). The experiment was conducted as described before8
and the IC50 values were measured as the drug concen-
tration that inhibits the cell growth by 50% compared
with growth of vehicle-treated cells. As shown in
Table 1, the IC50 of the most active analogues was in
the range of 35–75 lM not strongly different from that
of our lead compound 4TCNA. Furthermore, all the
analogues exhibited improved growth inhibition
potentials as compared to the parent compound Nvb.
Consistent with the degradation of hsp90 client proteins,
the most active inhibitors are those with the lowest
IC50.
3. (a) Marcu, M. G.; Chadli, A.; Bouhouche, I.; Catelli,
M.; Neckers, L. M. J. Biol. Chem. 2000, 275, 37181; (b)
Prodromou, C.; Siligardi, G.; O’Brien, R.; Woolfson, D.
N.; Regan, L.; Panaretou, B.; Ladbury, J. E.; Piper, P.
W.; Pearl, L. H. EMBO J. 1999, 18, 754; (c) Prodro-
mou, C.; Roe, S. M.; O’Brien, R.; Ladbury, J. E.; Piper,
P. W.; Pearl, L. H. Cell 1997, 90, 65; (d) Young, J. C.;
Obermann, W. M. J.; Hartl, F. U. J. Biol. Chem. 1998,
273, 18007; (e) Harris, S. F.; Shiau, A. K.; Agard, D. A.
Structure 2004, 12, 1087; (f) Allan, RK.; Mok, D.;
Ward, BK.; Ratajczak, T. J. Biol. Chem. 2006, 281,
7161.
4. (a) Hanahan, D.; Weinberg, R. A. Cell 2000, 100, 57;
(b) Richter, K.; Buchner, J. J. Cell. Physiol. 2001, 188,
281; (c) Neckers, L. Trends Mol. Med. 2002, 8, S55; (d)
Neckers, L.; Ivy, S. P. Curr. Opin. Oncol. 2003, 15,
419; (e) Zhang, H.; Burrows, F. J. Mol. Med. 2004, 82,
488.
5. (a) Chiosis, G.; Caldas Lopes, E.; Solit, D. Curr. Opin.
Invest. Drugs 2006, 7, 534; (b) Workman, P.; Burrows, F.;
Neckers, L.; Rosen, N. Ann. N.Y. Acad. Sci. 2007, 1113,
202.
In summary, results from these studies demonstrate that
the newly synthesised novobiocin analogues, based on a
simplified 3-aminocoumarin scaffold exhibited increased
inhibitory activity against the hsp90 protein folding pro-
cess. In this SARs study, we highlighted in denoviose
analogues 5, bearing a tosyl group on the 4-position,
that removal of C7/C8 substituents is not detrimental
for hsp90 inhibitory activity and strongly enhances the
capacity of the analogues to inhibit hsp90. Among these
analogues, compound 5g was identified to be the most
potent representative of the new family of simplified
coumarins. Our results suggest that 5g and 4TCNA
which exerted similar biological profile may be consid-
ered interesting compounds for the development of
more potent novobiocin analogues.
6. Yu, X. M.; Shen, G.; Neckers, L.; Blake, H.; Holzbeier-
lein, J.; Cronk, B.; Blagg, B. S. J. J. Am. Chem. Soc. 2005,
127, 12778.
7. Burlison, J. A.; Neckers, L.; Smith, A. B.; Maxwell, A.;
Blagg, B. S. J. J. Am. Chem. Soc. 2006, 128, 15529.
8. Le Bras, G.; Radanyi, C.; Peyrat, J.-F.; Brion, J.-D.;
Alami, M.; Marsaud, V.; Stella, B.; Renoir, J.-M. J. Med.
Chem. 2007, 50, 6189.
9. (a) Audisio, D.; Messaoudi, S.; Peyrat, J.-F.; Brion, J.-D.;
Alami, M. Tetrahedron Lett. 2007, 48, 6928; (b) Messao-
udi, S.; Audisio, D.; Brion, J.-D.; Alami, M. Tetrahedron
2007, 63, 10202.
10. (a) Wu, J.; Wang, L.; Fathi, R.; Yang, Z. Tetrahedron
Lett. 2002, 43, 4395; (b) Boland, G. M.; Donnelly, D. M.
X.; Finet, J. P.; Rea, M. D. J. Chem. Soc., Perkin Trans. 1
1996, 2591.