K. Kisseljova et al. / Bioorganic Chemistry 38 (2010) 229–233
233
Fig. 4. Docking of azab3RRASVA (left), RRASVA (center) and Razab3RASVA (right) with the substrate-binding cleft of the PKA complex with AMPPNP-Mn, simulating the
second substrate ATP of the phosphorylation reaction. The following color code was used for ligands: black – carbon, light gray – hydrogen, if shown, red – oxygen, blue –
nitrogen, orange – phosphorus, and yellow – Mn.
Pickeral, C. Shue, L.B. Vosshall, J. Zhang, Q. Zhao, X.H. Zheng, S. Lewis, Science
287 (2000) 2204–2215.
could be suggested that these phenomena are both governed by
[3] S.K. Hanks, T. Hunter, FASEB J. 9 (1995) 576–596.
the specificity pattern of the binding site for peptide side chains, it
interaction of the amino acid side chains with their recognition
sites on the protein molecule. These interactions can be changed
either by variation of the side chain structure, as has been shown
before, or by the backbone modification in the proper place. There-
fore, instead of recognition of a single side chain, the interaction of
the enzyme with clusters consisting of at least two amino acids
should be considered. Outside of these recognition clusters, the
backbone modifications are more tolerated and have smaller ef-
fects on ligand binding effectiveness. Therefore, the backbone
modification can be used to define the clusters and even to rank
them according to their stake into the overall specificity. On the
other hand, the regions between these clusters may have impor-
tance as the sites of substrate modification with minimal effect
on its activity. This might also be an important aspect to be consid-
ered in the design of peptidomimetic ligands.
[4] D. Bossemeyer, R.A. Engh, V. Kinzel, H. Ponstingl, R. Huber, EMBO J. 12 (1993)
849–859.
[5] M. Cherry, D.H. Williams, Curr. Med. Chem. 11 (2004) 663–673.
[6] T.G. Davies, M.L. Verdonk, B. Graham, S. Saalau-Bethell, C.C. Hamlett, T.
McHardy, I. Collins, M.D. Garrett, P. Workman, S.J. Woodhead, H. Jhoti, D.
Barford, J. Mol. Biol. 367 (2007) 882–894.
[7] S.K. Hanks, A.M. Quinn, T. Hunter, Science 241 (1988) 42–52.
[9] O. Zetterqvist, U. Ragnarsson, FEBS Lett. 139 (1982) 287–290.
[10] O. Zetterqvist, U. Ragnarsson, E. Humble, L. Berglund, L. Engstrom, Biochem.
Biophys. Res. Commun. 70 (1976) 696–703.
[11] S.S. Taylor, J. Zheng, E. Radzio-Andzelm, D.R. Knighton, L.F. Ten Eyck, J.M.
Sowadski, F.W. Herberg, W.M. Yonemoto, Philos. Trans. Roy. Soc. Lond. B Biol.
Sci. 340 (1993) 315–324.
[12] I. Tsigelny, B.D. Grant, S.S. Taylor, L.F. Ten Eyck, Biopolymers 39 (1996) 353–
365.
[13] M. Loog, N. Oskolkov, F. O’Farrell, P. Ek, J. Järv, Biochim. Biophys. Acta 1747
(2005) 261–266.
[14] A. Kreegipuu, N. Blom, S. Brunak, J. Järv, FEBS Lett. 430 (1998) 45–50.
[15] J.A. Ubersax, J.E. Ferrell Jr., Nat. Rev. Mol. Cell Biol. 8 (2007) 530–541.
[16] C. Kim, C.Y. Cheng, S.A. Saldanha, S.S. Taylor, Cell 130 (2007) 1032–1043.
[17] L.A. Pinna, M. Ruzzene, Biochim. Biophys. Acta 1314 (1996) 191–225.
[18] D. Mochly-Rosen, Science 268 (1995) 247–251.
[19] J. Järv, U. Ragnarsson, Bioorg. Chem. 19 (1991) 77–87.
[20] M. Eller, A. Sepp, R. Toomik, P. Ekman, J. Järv, U. Ragnarsson, L. Engstrom,
Biochem. Int. 25 (1991) 453–460.
[21] A. Grauer, B. König, Eur. J. Org. Chem. 2009 (2009) 5099–5111.
[22] J. Vagner, H. Qu, V.J. Hruby, Curr. Opin. Chem. Biol. 12 (2008) 292–296.
[23] H. Dali, O. Busnel, J. Hoebeke, L. Bi, P. Decker1, J.-P. Briand, M. Baudy-Floc’h, S.
Muller, Mol. Immunol. 44 (2007) 3024–3036.
Acknowledgments
This investigation was supported by the Estonian Ministry of
Education and Research Grant SF0180064s08 and by the Kristjan
Jaak travel scholarship for K.K.
Appendix A. Supplementary data
[24] P. Cohen, Nat. Rev. Drug Discov. 1 (2002) 309–315.
Supplementary data associated with this article can be found, in
[25] O. Busnel, L. Bi, M. Baudy-Floc’h, Tetrahedron Lett. 46 (2005) 7073–7075.
[26] O. Busnel, L. Bi, H. Dali, A. Cheguillaume, S. Chevance, A. Bondon, S. Muller, M.
Baudy-Floc’h, J. Org. Chem. 70 (2005) 10701–10708.
[27] A. Dif, F. Boulmedais, M. Pinot, V. Roullier, M. Baudy-Floc’h, F.M. Coquelle, S.
Clarke, P. Neveu, F. Vignaux, R.L. Borgne, M. Dahan, Z. Gueroui, V. Marchi-
Artzner, J. Am. Chem. Soc. 131 (2009) 14738–14746.
[28] A. Kuznetsov, A. Uri, G. Raidaru, J. Järv, Bioorg. Chem. 32 (2004) 527–535.
[29] R. Roskoski Jr., Methods Enzymol. 99 (1983) 3–6.
[30] O. Trott, A.J. Olson, J. Comput. Chem. 31 (2010) 455–461.
[31] M.F. Sanner, J. Mol. Graph. Modell. 17 (1999) 57–61.
[32] O. Busnel, M. Baudy-Floc’h, Tetrahedron Lett. 48 (2007) 5767–5770.
[33] H. Dali, O. Busnel, J. Hoebeke, L. Bi, P. Decker, J.-P. Briand, M. Baudy-Floc’h, S.
Muller, Mol. Immunol. 44 (2007) 3024–3036.
References
[1] T. Hunter, Cell 100 (2000) 113–127.
[2] G.M. Rubin, M.D. Yandell, J.R. Wortman, G.L. Gabor Miklos, C.R. Nelson, I.K.
Hariharan, M.E. Fortini, P.W. Li, R. Apweiler, W. Fleischmann, J.M. Cherry, S.
Henikoff, M.P. Skupski, S. Misra, M. Ashburner, E. Birney, M.S. Boguski, T.
Brody, P. Brokstein, S.E. Celniker, S.A. Chervitz, D. Coates, A. Cravchik, A.
Gabrielian, R.F. Galle, W.M. Gelbart, R.A. George, L.S. Goldstein, F. Gong, P.
Guan, N.L. Harris, B.A. Hay, R.A. Hoskins, J. Li, Z. Li, R.O. Hynes, S.J. Jones, P.M.
Kuehl, B. Lemaitre, J.T. Littleton, D.K. Morrison, C. Mungall, P.H. O’Farrell, O.K.