C O M M U N I C A T I O N S
Table 1. Catalysis of the Vinylogous Mukaiyama Aldol by 18
Scheme 4. Completion of the Total Synthesis of (-)-Rasfonin (1)a
yield
entry
18
R
R
′
(%)
threo:erythroa
threo dra
1
2
3
a
b
c
Me
o-tol
o-tol
H
H
Me
75
78
81
4:1
11:1
20:1
3:1
6:1
>20:1
1
a Diastereomeric ratio was measured by H NMR.
a Reagents and conditions: (a) TiCl4, DIPEA, CH2Cl2, 0 °C, then
BOMCl, 0 °C, 24-48 h; (b) O3, CH2Cl2:MeOH (95:5), pH 7 phosphate
buffer, -78 °C, then DMS, -78 to rt, 18 h; (c) BH3‚THF, THF, 0 °C, 2.5
h; (d) (MeO)(Me)NH‚HCl, AlMe3, THF, -78 to 0 °C, 1.5 h; (e) BnBr,
TBAI, Ag2O, CH2Cl2, rt, 4 h; (f) DIBAL-H, Et2O, -78 °C, 3 h; (g) s-BuLi,
THF, -78 to -20 °C, 1 h, aq. workup, then TFA, THF, 0 °C, 1 h, then
H2O, 18 h; (h) n-BuLi, THF, 0 °C to rt, 18 h; (i) BCl3‚DMS, CH2Cl2, -78
°C to rt, 1 h; (j) TBSCl, imidazole, CH2Cl2, rt, 18 h; (k) LiOH‚H2O, THF,
H2O, MeOH, rt, 40 h; (l) 2,4,6-trichlorobenzoyl chloride, TEA, toluene, rt,
1 h, then 20, toluene, DMAP, rt, 5 h; (m) CSA, CH2Cl2, MeOH, 0 °C, 2 h.
Scheme 3. Synthesis of Pyranone 20a
a Reagents and conditions: (a) DIBAL-H, Et2O, -78 °C, 10 min; (b)
DBU, THF, 0 °C, 20 h; (c) MnO2, CH2Cl2, rt, 24 h; (d) 1 N HCl, THF, rt,
25 min.
centers via asymmetric alkylation. To the best of our knowledge,
we report the first use of cationic chiral oxazaborolidine catalyst
18c in the key assembly of butenolide 17 via an asymmetric
vinylogous Mukaiyama aldol addition, whose scope we are currently
seeking to expand.
more-hindered oxazaborolidine 18c afforded butenolide 17 in 81%
yield with 20:1 threo:erythro relative diastereoselectivity. To our
delight, the (R,R)-threo:(S,S)-threo diastereomeric ratio exceeded
20:1. A putative transition state (Table 1) based on Corey’s model11
for association of the aldehyde with 18a-c suggests that the
B-substituent controls orientation of the siloxyfuran (erythro:threo
or C1-C2 diastereoselection), and the bulky ring aryl groups control
the alkyl group orientation of the aldehyde (C2-C3 diastereose-
lection).
Reduction of 17 with DIBAL-H furnished lactol 4 quantitatively
(Scheme 3). Sequential treatment of 4 with DBU and oxidation
gave an equilibrium mixture (1:1) of 17 and 19. Recycling recovered
17 afforded 19 in 58% overall yield. Desilylation then provided
alcohol 20 in 94% yield.
Acknowledgment. We thank the National Science Foundation
(CHE-0305790) for support of these studies.
Supporting Information Available: Experimental procedures and
analytical and spectroscopic (1H NMR, 13C NMR, IR) data for all new
compounds. This material is available free of charge via the Internet
References
(1) Akiyama, K.; Kawamoto, S.; Fujimoto, H.; Ishibashi, M. Tetrahedron
Lett. 2003, 44, 8427-8431.
The key chiral center in diene acid 2 was installed via a TiCl4-
catalyzed asymmetric alkylation of 3-azaimide 21 with BOMCl
(Scheme 4), providing 22 in 81% yield and >95:5 diastereoselec-
tivity.13 Terminal olefin cleavage by ozonolysis/BH3‚THF reduction
furnished imido alcohol 23 in 76% overall yield. After protection
of the alcohol as the benzyl ether, 23 was transformed by standard
methods to aldehyde 24 (Scheme 2), whose remarkable base
sensitivity led to difficulties in homologation to enal 26. Ultimately,
conversion was achieved with no decomposition of 24 using a
modified Corey-Peterson protocol.14 Condensation of 24 with
lithiated R-silyl imine 25 followed by TFA-induced isomerization15
provided (E)-26 (50:1) in 81% yield after in situ hydrolysis of the
intermediate iminium ion(s).
(2) Tomikawa, T.; Shin-Ya, K.; Furihato, K.; Kinoshita, T.; Miyajima, A.;
Seto, H.; Hayakawa, Y. J. Antibiot. 2000, 53, 848-850.
(3) Akiyama, K.; Yamamoto, S.; Fujimoto, H.; Ishibashi, M. Tetrahedron
2005, 61, 1827-1833.
(4) Mukaiyama, T.; Banno, K.; Naraska, K. J. Am. Chem. Soc. 1974, 96,
7503-7509.
(5) Boeckman, R. K., Jr.; Boehmler, D. J.; Musselman, R. A. Org. Lett. 2001,
3, 3777-3780.
(6) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651-1660.
(7) Boeckman, R. K., Jr.; Song, X.; Pero, J. E. Org. Lett. 2006, submitted.
(8) Schobert, R. Org. Synth. 2005, 82, 140-145.
(9) Miyazaki, T.; Han-ya, Y.; Tokuyama, H.; Fukuyama, T. Synlett 2004, 3,
477-480 and references therein.
(10) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994,
639-666.
(11) Ryu, D. H.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 6388-6390 and
references therein.
Horner-Wadsworth-Emmons olefination16 of aldehyde 26 with
methyl diethylphosphonoacetate (27) furnished the corresponding
dienoate in 96% yield as a single diastereomer. The diene ester
was then elaborated to target acid 2 by protecting group modifica-
tion and hydrolysis (56% over three steps).
(12) For oxazaborolidine-catalyzed asymmetric Mukaiyama, Michael, and aldol
reactions, see: (a) Liu, D.; Hong, S.; Corey, E. J. J. Am. Chem. Soc.
2006, 128, 8160-8161 and references therein. (b) Ishihara, K.; Kondo,
S.; Yamamoto, H. J. Org. Chem. 2000, 65, 9125-9128 and references
therein.
(13) Evans, D. A.; Urpi, F.; Somers, T. C.; Clark, J. S.; Bilodeau, M. T. J.
Am. Chem. Soc. 1990, 112, 8215-8216.
The complete carbon skeleton of (-)-rasfonin (1) was assembled
via Yamaguchi coupling of alcohol 20 with diene acid 2.17
Desilylation with CSA afforded (-)-rasfonin (1) in 84% yield.1-3
The present total synthesis is shorter (longest linear sequence of
16 steps) and higher yielding (12.7% overall yield) than the only
reported route.3 The flexibility of camphor lactams as auxiliaries
was exemplified during the installation of the side chain stereogenic
(14) Corey, E. J.; Enders, D.; Bock, M. G. Tetrahedron Lett. 1976, 7-10.
(15) Zeng, X.; Zeng, F.; Negishi, E. Org. Lett. 2004, 6, 3245-3248 and
references therein.
(16) Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733-
1738.
(17) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem.
Soc. Jpn. 1979, 52, 1989-1993.
JA063532+
9
J. AM. CHEM. SOC. VOL. 128, NO. 34, 2006 11033