LETTER
Enantioselective Mukaiyama–Michael Reaction
559
further converted into 12 (Scheme 2). According to the
optical rotation value of 12, it was an enantiomer of the
previously known product {[a]D –2.5 (c = 2.2 in
CHCl3)}.11b Thus, the configuration of (+)-anti-6a was
proven to be S,S.
References and Notes
(1) (a) Christoffers, J. Eur. J. Org. Chem. 1998, 1259.
(b) Krause, N.; Hoffmann-Röder, A. Synlett 2001, 171.
(c) Christoffers, J. Synlett 2001, 723.
(2) (a) Narasaka, K.; Soai, K.; Mukaiyama, T. Chem. Lett. 1974,
3, 1223. (b) Narasaka, K.; Soai, K.; Aikawa, Y.;
Mukaiyama, T. Bull. Soc. Chem. Jpn. 1976, 49, 779.
(3) Kobayashi, S.; Suda, S.; Yamada, M.; Mukaiyama, T. Chem.
Lett. 1994, 23, 97.
(4) (a) Bernardi, A.; Karamfilova, K.; Boschin, G.; Scolastico,
C. Tetrahedron Lett. 1995, 36, 1363. (b) Bernardi, A.;
Colombo, G.; Scolastico, C. Tetrahedron Lett. 1996, 37,
8921.
(5) Evans, D. A.; Rovis, T.; Kozlowski, M. C.; Tedrow, J. S.
J. Am. Chem. Soc. 1999, 121, 1994.
(6) (a) Danishefsky, S.; Kitahara, T.; Schuda, P. F.; Etheredge,
S. J. J. Am. Chem. Soc. 1976, 98, 3028. (b) Grieco, P. A.;
Ohfune, Y.; Majetich, G. J. Org. Chem. 1979, 44, 3092.
(c) Myers, A. G.; McKinstry, L. J. Org. Chem. 1996, 61,
2428. (d) Movassaghi, M.; Jacobsen, E. N. J. Am. Chem.
Soc. 2002, 124, 2456.
(7) (a) Wheeler, J. W.; Happ, G. M.; Araujo, J.; Pasteels, J. M.
Tetrahedron Lett. 1972, 46, 4635. (b) Rao, Y. S. Chem. Rev.
1976, 78, 625. (c) Ravid, U.; Silverstein, R. M.; Smith, L. R.
Tetrahedron 1978, 34, 1449. (d) Bloch, R.; Gilbert, L.
J. Org. Chem. 1987, 52, 4603.
(8) (a) Nikishin, G. I.; Svitanko, I. V.; Troyansky, E. I. J. Chem.
Soc., Perkin Trans. 2 1983, 595. (b) Ohkuma, T.; Kitamura,
M.; Noyori, R. Tetrahedron Lett. 1990, 31, 5509.
(c) Tsuboi, S. J. Org. Chem. 1998, 63, 1102. (d) Monetaña,
M.; García, F.; Batalla, C. Tetrahedron Lett. 2004, 45, 8549.
(e) Teijeira, M.; Suárez, P. L.; Gómez, G.; Terán, C.; Fall, Y.
Tetrahedron Lett. 2005, 46, 5889.
(9) (a) Casiraghi, G.; Rassu, G. Synthesis 1995, 607.
(b) Szlosek, M.; Franck, X.; Figadère, B.; Cavé, A. J. Org.
Chem. 1998, 63, 5169. (c) Evans, D. A.; Kozlowski, M. C.;
Murry, J. A.; Burgey, C. S.; Campos, K. R.; Connell, B. T.;
Staples, R. J. J. Am. Chem. Soc. 1999, 121, 669. (d) Evans,
D. A.; Burgey, C. S.; Kozlowski, M. C.; Tregay, S. W. J. Am.
Chem. Soc. 1999, 121, 686. (e) Casiraghi, G.; Zanardi, F.;
Appendino, G.; Rassu, G. Chem. Rev. 2000, 100, 1929.
(10) (a) Harding, E. K.; Coleman, M. T.; Liu, L. T. Tetrahedron
Lett. 1991, 32, 3795. (b) Morimoto, Y.; Nishida, K.;
Hayashi, Y.; Shirahama, H. Tetrahedron Lett. 1993, 34,
5773. (c) Pelter, A.; Ward, R. S.; Sirit, A. Tetrahedron:
Asymmetry 1994, 5, 1745. (d) Martin, S. F.; Barr, K. J.
J. Am. Chem. Soc. 1996, 118, 3299.
Figure
Box]Cu(OTf)2(H2O)2
2
X-ray
crystallography
of
[(4R,5S)-diPh-
The structure of [(4R,5S)-diPhBox]Cu(OTf)2(H2O)2 was
determined by X-ray crystallography (Figure 1). This
complex shows the octahedral geometry, the counter ions
weakly coordinate to the apical site and two H2O’s are lo-
cated in equatorial site. Based on X-ray crystallographic
information and the observed enantioselectivity in this
study, a tentative model would have the s-trans enone
template in a distorted square planar geometry. The s-
trans conformation would be attributed to a p–p stabiliza-
tion of the transition state as shown in Figure 2.20
Ph
O
Ph
N
Cu
O
O
Ph
O
N
O
S
Ph
Si-face
Figure 3 The expected model of the substrate–catalyst complex
(11) (a) Kitajima, H.; Katsuki, T. Synlett 1997, 568.
(b) Kitajima, H.; Ito, K.; Katsuki, T. Tetrahedron 1997, 53,
17015. (c) Nishikori, H.; Ito, K.; Katsuki, T. Tetrahedron:
Asymmetry 1998, 9, 1165.
(12) Desimoni, G.; Faita, G.; Filippone, S.; Mella, M.; Zampori,
M. G.; Zema, M. Tetrahedron 2001, 57, 10203.
(13) Suga, H.; Kitamura, T.; Kakehi, A.; Baba, T. Chem.
Commun. 2004, 1414.
(14) Brown, S. P.; Goodwin, N. C.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2003, 125, 1192.
In summary, we have shown that the a¢-phenylsulfonyl
enone templates are highly efficient for the catalytic enan-
tioselective Mukaiyama–Michael reactions. Using 1d–
Cu(OTf)2 complex, the Mukaiyama–Michael reaction of
2-(trimethylsilyloxy)furan with a¢-phenylsulfonyl enones
affords g-butenolides in high enantioselectivities up to
99% ee and high anti/syn selectivities (up to 99:1).
(15) Yang, H.; Hong, Y.-T.; Kim, S. Org. Lett. 2007, 9, 2281.
(16) (a) Wada, E.; Yasuoka, H.; Kanemasa, S. Chem. Lett. 1994,
23, 145. (b) Wada, E.; Yasuoka, H.; Kanemasa, S. Chem.
Lett. 1994, 23, 1637. (c) Wada, E.; Pei, W.; Kanemasa, S.
Chem. Lett. 1994, 23, 2345. (d) Wada, E.; Pei, W.; Yasuoka,
H.; Chin, U.; Kanemasa, S. Tetrahedron 1996, 52, 1205.
(17) (a) Zhao, J.-L.; Liu, L.; Sui, Y.; Liu, Y.-L.; Wang, D.; Chen,
Y.-J. Org. Lett. 2006, 8, 6127. (b) Landa, A.; Richter, B.;
Johansen, R. L.; Minkkilä, A.; Jørgensen, K. A. J. Org.
Chem. 2007, 72, 240.
Acknowledgment
We thank KOSEF (R01-2007-000-20315-0), CMDS, and KEPCO
for financial support.
Synlett 2008, No. 4, 555–560 © Thieme Stuttgart · New York