then substrates for building the library are covalently attached
to the polymer proximal to the electrodes. Site-selective
chemical reactions are then conducted to further develop the
substrates. These site-selective reactions are essentially
competition experiments between the electrochemical gen-
eration of a chemical reagent or catalyst and the solution
phase destruction of the reagent or catalyst before it can
migrate away from the electrodes employed for its formation.
Hence, each new microelectrode array reaction requires two
new developments; an electrochemical method for generating
a reagent or catalyst and a solution phase “confining-agent”
that destroys the reagent or catalyst generated.
generating N-acyliminium ions on a microelectrode array
would represent an important addition to this effort. We
report herein a synthetic strategy for accomplishing this task.
In principle, site-selective N-acyliminium ion generation
can be achieved by using the electrode to generate either an
acid for catalyzing the departure of a leaving group from a
suitable precursor or an oxidant for converting an amide with
an silyl-electroauxiliary into the N-acyliminium ion (Scheme
2).11,12 For the first, a confining agent would be needed to
Scheme 2
Because reactive N-acyliminium ion intermediates have
proven very useful for building alkaloids (Scheme 1, eq 1)7
Scheme 1
scavenge acid generated at selected electrodes in the micro-
electrode array. For the second, a confining agent would be
needed to scavenge an oxidant generated at the electrodes.
While both approaches are attractive, the recent demonstra-
tion that t-Boc groups can be deprotected in a site-selective
fashion using acid on a microelectrode array13 led us to start
our investigation by examining the acid-catalyzed approach.
Our twin goals were to both develop an effective route for
site-selectively producing N-acyliminium ions on a micro-
electrode array and demonstrate the generality of the
electrochemical generation of acid/ confining-agent strategy
developed for the t-Boc deprotection reaction. Can reaction
conditions worked out for the site-selective generation of a
chemical reagent on a microelectrode array be extended to
new applications?
The study began with the synthesis of a suitable test
substrate for use on the microelectrode array (Scheme 3).
To this end, phenylalanine methyl ester was alkylated with
trimethylsilylmethyl chloride and the resulting product acyl-
and constrained peptidomimetics (Scheme 1, eq 2),8–10 and
because they are potentially useful for building peptide-based
bioconjugates (Scheme 1, eq 3), a method for site-selectively
(10) For examples using electrochemistry as a tool to functionalize amino
acids and generate N-acyliminium ions, see: (a) Beal, L. M.; Liu, B.; Chu,
W.; Moeller, K. D. Tetrahedron 2000, 56, 10113. and citations therein. (b)
Fobian, Y. M.; d’Avignon, D. A.; Moeller, K. D. Bioorg. Med. Chem. Lett.
1996, 6, 315. (c) Fobian, Y. M.; Moeller, K. D. Methods Mol. Med. 1999,
23 (Peptidomimetic Protocols) , 259. (d) Tong, Y.; Fobian, Y. M.; Wu,
M.; Boyd, N. D.; Moeller, K. D. J. Org. Chem. 2000, 65, 2484. (e) Cornille,
F.; Fobian, Y. M.; Slomczynska, U.; Beusen, D. D.; Marshall, G. R.;
Moeller, K. D. Tetrahedron Lett. 1994, 35, 6989. (f) Cornille, F.;
Slomczynska, U.; Smythe, M. L.; Beusen, D. D.; Moeller, K. D.; Marshall,
G. R. J. Am. Chem. Soc. 1995, 117, 909. (g) Slomczynska, U.; Chalmers,
D. K.; Cornille, F.; Smythe, M. L.; Beusen, D. D.; Moeller, K. D.; Marshall,
G. R. J. Org. Chem. 1996, 61, 1198. (h) Simpson, J. C.; Ho, C.; Shands,
E. F. B.; Gershengorn, M. C.; Marshall, G. R.; Moeller, K. D. Bioorg. Med.
Chem. 2002, 10, 291. (i) Li, W.; Hanau, C. E.; d’Avignon, A.; Moeller,
K. D. J. Org. Chem. 1995, 60, 8155.
(7) For an extensive review of N-acyliminium ions in synthesi, see:
Maryanoff, B. E.; Zhang, H.-C.; Cohen, J. H.; Turchi, I. J.; Maryanoff, C.
A Chem. ReV. 2004, 104, 1431.
(8) For reviews concerning the use of lactam based peptidomimetics,
see: (a) Cluzeau, J.; Lubell, W. D. Biopolymers 2005, 80, 98. (b) I-lalab,
L.; Gosselin, F.; Lubell, W. D. Biopolymers 2000, 55, 101. (c) Hanessian,
S.; McNaughton-Smith, G.; Lombart, H.-G.; Lubell, W. D. Tetrahedron
1997, 53, 12789. For additional lead references, see: (d) Polyak, F.; Lubell,
W. D. J. Org. Chem. 1998, 63, 5937. (e) Curran, T. P.; Marcaurell, L. A.;
O’Sullivan, K. M. Org. Lett. 1999, 1, 1225. (f) Gosselin, F.; Lubell, W. D.
J. Org. Chem. 2000, 65, 2163. (g) Polyak, F.; Lubell, W. D. J. Org. Chem.
2001, 66, 1171. (h) Feng, Z.; Lubell, W. D. J. Org. Chem. 2001, 66, 1181
.
(9) For synthetic routes to peptidomimetics, see: (a) Scott, W. L.; Alsina,
J.; Kennedy, J. H.; O’Donnell, M. J. Org. Lett. 2004, 6, 1629. (b) Palomo,
C.; Aizpurua, J. M.; Benito; A.; Miranda, J. I.; Fratila, R. M.; Matute, C.;
Domercq, M.; Gago, F.; Martin- Santamaria, S.; Linden, A. J. Am. Chem.
Soc. 2003, 125, 16243. (c) Colombo, L.; Di Giacomo, M.; Vinci, V.;
Colombo, M.; Manzoni, L.; Scolastico, C. Tetrahedron 2003, 59, 4501.
(d) Dolbeare, K.; Pontoriero, G. F.; Gupta, S. K.; Mishra, R. K.; Johnson,
R. L. J. Med. Chem. 2003, 46, 727. (e) Khalil, E. M.; Pradhan, A.; Ojala,
W. H.; Gleason, W. B.; Mishra, R. K.; Johnson, R. L. J. Med. Chem. 1999,
42, 2977. (f) Aube, J. AdV. Amino Acid Mimetics Peptidomimetics 1997, 1,
193. (g) Tong, Y.; Olczak, J.; Zabrocki, J.; Gershengorn, M. C.; Marshall,
G. R.; Moeller, K. D. Tetrahedron 2000, 56, 9791. (h) Duan, S.; Moeller,
K. D. Tetrahedron 2001, 57, 6407. (i) Liu, B.; Brandt, J. D.; Moeller, K. D.
(11) For the generation of N-acyliminium ions using a silyl group as an
electroauxiliary, see: (a) Yoshida, J.; Isoe, S. Tetrahedron Lett. 1987, 28,
6621. (b) Suga, S.; Watanabe, M.; Yoshida, J. J. Am. Chem. Soc. 2002,
124, 14825. For electroauxiliary as a general concept, see: (c) Yoshida, J.;
Nishiwaki, K. J. Chem. Soc., Dalton Trans. 1998, 2589
.
(12) For applications to the synthesis of peptide derivatives, see: Sun,
H.; Martin, C.; Kesselring, D.; Keller, R.; Moeller, K. D. J. Am. Chem.
Soc. 2006, 128, 13761
.
(13) For the use of acid on the chips, see: (a) Rossi, F. M. ; Montgomery,
D. D. ,PCT Int. Appl. (2000), 52 pp. CODEN: PIXXD2 WO 0053625 A2
20000914. (b) Maurer, K.; McShea, A.; Strathmann, M.; Dill, K. J. Comb.
Chem. 2005, 7, 637.
Tetrahedron 2003, 59, 8515
.
2502
Org. Lett., Vol. 10, No. 12, 2008