C O M M U N I C A T I O N S
Table 1. Modular Synthesis of Substituted Pyridines
cascade reaction comprising (1) a novel N-iminative, Cu-catalyzed
cross-coupling of alkenylboronic acids at the NsO bond of R,ꢀ-
unsaturated ketoxime O-pentafluorobenzoates, (2) electrocyclization
of the resulting 3-azatriene, and (3) air oxidation affording highly
substituted pyridines in moderate to excellent isolated yields
(43-91%). Starting materials are readily available, and functional
group tolerance is quite good. The ease of construction of R,ꢀ-
unsaturated ketoximines and the broad availability of alkenylboronic
acids implies that an extensive range of substituents can be
selectively incorporated around the pyridine ring, but the full
potential of this methodology and an exploration of a greater variety
of substituents must await additional studies. In addition to its use
in pyridine synthesis, this new and simple Cu-catalyzed N-
iminoalkenylation invites additional mechanistic and synthetic
studies of relatively unexplored 3-azatrienes.
Acknowledgment. The National Institutes of General Medical
Sciences, DHHS, supported this investigation through Grant No.
GM066153. Dr. Gary Allred of Synthonix provided the boronic
acids used in our studies.
Supporting Information Available: Experimental procedures,
synthesis and characterization of all new compounds and scanned
spectra. This material is available free of charge via the Internet at
References
(1) (a) Liu, S.; Yu, Y.; Liebeskind, L. S. Org. Lett. 2007, 9, 1947–1950. (b)
Zaman, S.; Mitsuru, K.; Ab, A. D. Org. Lett. 2005, 7, 609–611. (c) Narasaka,
K.; Kitamura, M. Eur. J. Org. Chem. 2005, 4505–4519. (d) Yu, Y.; Srogl,
J.; Liebeskind, L. S. Org. Lett. 2004, 6, 2631–2634. (e) Narasaka, K. Pure
Appl. Chem. 2002, 74, 143–149.
(2) (a) O’Hagan, D. Nat. Prod. Rep. 2000, 17, 435–446. (b) O’Hagan, D. Nat.
Prod. Rep. 1997, 14, 637–651.
a Final thermolysis carried out for 5 h at 90 °C. b Final thermolysis
carried out for 3 h at 150 °C.
Scheme 3. Side Reactions Observed with Alkyl Ketoximines
(3) (a) Heller, B.; Hapke, M. Chem. Soc. ReV. 2007, 36, 1085–1094. (b)
Movassaghi, M.; Hill, M. D.; Ahmad, O. K. J. Am. Chem. Soc. 2007, 129,
10096–10097. (c) Trost, B. M.; Gutierrez, A. C. Org. Lett. 2007, 9, 1473–
1476. (d) Meketa, M. L.; Weinreb, S. M. Org. Lett. 2007, 9, 853–855. (e)
Sydorenko, N.; Hsung, R. P.; Vera, E. L. Org. Lett. 2006, 8, 2611–2614. (f)
Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592–4593. (g)
Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 14254–14255.
(h) Sklenicka, H. M.; Hsung, R. P.; McLaughlin, M. J.; Wei, L.-L.;
Gerasyuto, A. I.; Brennessel, W. W. J. Am. Chem. Soc. 2002, 124, 10435–
10442. (i) Ciufolini, M. A.; Hermann, C. Y. W.; Dong, Q.; Shimizu, T.;
Swaminathan, S.; Xi, N. Synlett 1998, 105–114. (j) Kelly, T. R.; Liu, H.
J. Am. Chem. Soc. 1985, 107, 4998–4999. (k) Boger, D. L. Chem. ReV.
1986, 86, 781–793. (l) Kro¨hnke, F. Synthesis 1975, 1–24.
(4) Bagley, M. C.; Dale, J. W.; Bower, J. Synlett 2001, 1149–1151.
(5) (a) Tanaka, K.; Mori, H.; Yamamoto, M.; Katsumura, S. J. Org. Chem. 2001,
66, 3099–3110. (b) Lee, C.-H.; Jiang, M.; Cowart, M.; Gfesser, G.; Perner,
R.; Kim, K. H.; Gu, Y. G.; Williams, M.; Jarvis, M. F.; Kowaluk, E. A.;
Stewart, A. O.; Bhagwat, S. S. J. Med. Chem. 2001, 44, 2133–2138. (c)
Molina, P.; Pastor, A.; Vilaplana, M. J. J. Org. Chem. 1996, 61, 8094–
8098. (d) Bonini, C.; D’Auria, M.; Funicello, M.; Romaniello, G. Tetrahedron
2002, 58, 3507–3512. (e) Panunzio, M.; Bongini, A.; Tamanini, E.; Campana,
E.; Martelli, G.; Vicennati, P.; Zanardi, I. Tetrahedron 2003, 59, 9577–
9582.
to afford a transient dihydropyridine. Rapid aerobic oxidation
delivers the observed pyridine products.
Although the pyridine synthesis appears quite general in scope,
a substrate bearing CH3 as R1 generated product mixtures from
which only low yields of the anticipated pyridine were isolated
(Scheme 3). It therefore appears that the ketoximine substitutent
R1 cannot be attached to the imine carbon via an sp3 C-H. The
inefficiency of this reaction when R1 is methyl is presumed to result
from a thermally favorable 1,5-hydrogen shift in the 3-azatriene
intermediate.9 The unproductive (E)-3-azatriene isomer would be
favored over the more congested (Z)-3-azatriene geometric isomer
at equilibrium, further compromising the desired pyridine pathway.
R,ꢀ-Unsaturated ketoxime O-pentafluorobenzoates in which the
double bond was part of an aromatic system (phenyl, furan, indole)
were also ineffective substrates, at least under the current reaction
conditions.
(6) For the current study, the initial intermediate from cross-coupling has not
been characterized. On thin layer chromatography, it has a distinctive yellow
color and is UV-active; on that basis, it is tentatively assumed to be the
3-azatriene and not the dihydropyridine. Upon further heating, the yellow
TLC spot disappears and is converted to a new colorless spot that leads to
the pyridine product upon workup. Additional studies will clarify the status
of the intermediates in this new pyridine synthesis.
(7) Snyder, H. R.; Konecky, M. S.; Lennarz, W. J. J. Am. Chem. Soc. 1958, 80,
3611–3615.
(8) Yin, L. X.; Liebscher, J. Chem. ReV. 2007, 107, 133–173.
(9) Saettel, N. J.; Wiest, O. J. Org. Chem. 2000, 65, 2331–2336.
In conclusion, a simple, modular method to prepare highly
substituted pyridines has been disclosed. The method employs a
JA8013743
9
J. AM. CHEM. SOC. VOL. 130, NO. 22, 2008 6919