Hurley and Dake
natural product to a spirocyclic system a followed ultimately
to an azaspirocyclic ketone represented by b. It was envisioned
that a compound such as b could be generated by using a
semipinacol reaction that proceeds through either an azacarbe-
nium ion or an intermediate having azacarbenium ion character.
To this end, our research group developed a set of semipinacol
processes forming azaspirocyclic ketones.8,9 One method in the
set involved reaction between a N-sulfonyl enamide (ene-
sulfonamide) and N-bromosuccinimide (NBS) at low temper-
ature. The putative bromonium ion (or bromine-alkene π-com-
plex) intermediate then induced a semipinacol process with
simultaneous ring expansion.8a,b,10 These reactions have the
capability of producing azaspirocyclic ketone products in a
highly selective manner. As an instructive example, the reaction
between cyclobutanol 2 and NBS produced cyclopentanone 3as
a single diastereomer (eq 1). The diastereomer that is produced is
important to the halichlorine problem. The relative configura-
tions of the chirality centers in 3 result from (a) the approach
of the electrophilic brominating reagent on the opposite face of
the 6-allyl substituent of the heterocycle and (b) the anti-
orientation of the semipinacol process. Consequently, the
configuration of the 3° spirocyclic carbon atom in 3 has the
alkyl group that migrated in the semipinacol reaction trans to
the bromine substituent. In considering the elaboration of the
ketone functional group in 3 in a manner to establish the
C13-C14 bond of 1, it is immediately recognizable that
compound 3 possesses the incorrect relative stereochemical
configuration for the successful synthesis of 1.
FIGURE 2. An analysis of 1.
of these compounds has been disclosed since their discovery.
This work (up to 2005) has been summarized in an excellent
review.3 The groups of Danishefsky, Heathcock, and Uemura
each have reported completed total syntheses of either hali-
chlorine or pinnaic acid.4 Other groups have completed signifi-
cant progress to the tricyclic core of halichlorine to construct
relay compounds for the formal total syntheses of these natural
products.5 A number of groups have developed new methods
for the formation of the [4.5]-6-azaspirodecane ring system
within 1.6 Our interest in the synthesis of alkaloids that contain
spiro-fused ring systems led us to consider 1 as an engaging
target for synthesis.7
The [4.5]-6-azaspirodecane ring system embedded within 1
served as our inspiration for a possible synthetic route (Figure
2). Our initial analysis centered on the deconstruction of the
(3) Clive, D. L. J.; Yu, M.; Wang, J.; Yeh, V. S. C.; Kang, S. Chem. ReV.
2005, 105, 4483–4514.
(4) (a) Trauner, D.; Schwarz, J. B.; Danishefsky, S. J. Angew. Chem., Int.
Ed. 1999, 38, 3542–3545. (b) Carson, M. W.; Kim, G.; Hentmann, M. F.; Trauner,
D.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2001, 40, 4450–4452. (c) Carson,
M. W.; Kim, G.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2001, 40, 4453–
4456. (d) Christie, H. S.; Heathcock, C. H. Proc. Natl. Acad. Sci. 2004, 101,
12079–12084. (e) Xu, S.; Arimoto, H.; Uemura, D. Angew. Chem., Int. Ed. 2007,
46, 5746.
(5) (a) Andrade, R. B.; Martin, S. F. Org. Lett. 2005, 7, 5733–5735. (b)
Clive, D. L. J.; Yu, M.; Li, Z. Chem. Commun. 2005, 906–908. (c) Matsumura,
Y.; Aoyagi, S.; Kibayashi, C. Org. Lett. 2003, 5, 3249–3252. (d) Matsumura,
Y.; Aoyagi, S.; Kibayashi, C. Org. Lett. 2004, 6, 965–968. (e) Arimoto, H.;
Asano, S.; Uemura, D. Tetrahedron Lett. 1999, 40, 3583–3586. (f) Hayakawa,
I.; Arimoto, H.; Uemura, D. J. Chem. Soc, Chem. Commun. 2004, 1222–1223.
(g) Zhang, H.-L.; Zhao, G.; Ding, Y.; Wu, B. J. Org. Chem. 2005, 70, 4954–
4961. (h) Clive, D. L. J.; Yeh, V. S. C. Tetrahedron Lett. 1999, 40, 8503–8507.
(i) Yu, M.; Clive, D. L. J.; Yeh, V. S. C.; Kang, S.; Wang, J. Tetrahedron Lett.
2004, 45, 2879–2881. (j) Clive, D. L. J.; Wang, J.; Yu, M. Tetrahedron Lett.
2005, 46, 2853–2855. (k) Feldman, K. S.; Perkins, A. L.; Masters, K. M. J.
Org. Chem. 2004, 69, 7928–7932. (l) Shindo, M.; Fukuda, Y.; Shishido, K.
Tetrahedron Lett. 2000, 41, 929–932. (m) Yokota, W.; Shindo, M.; Shishido,
K. Heterocycles 2001, 54, 871–885. (n) Itoh, M.; Kuwahara, J.; Itoh, K.; Fukuda,
Y.; Kohya, M.; Shindo, M.; Shishido, K. Bioorg. Med. Chem. Lett. 2002, 12,
2069–2072.
This observation led us to devise a new synthetic approach
toward 1 (Figure 3). In reconsidering the ring system and its
substituents present in a, we considered a possible solution that
avoided use of the ketone function to establish the C13-C14
bond. Rather, the C13-C14 bond of the target system a would
be incorporated directly in the semipinacol substrate. It is well-
established that, barring unusual geometrical stereoelectronic
constraints,11 more substituted alkyl groups preferentially
perform 1,2-shifts, with retention of configuration of the
migrating center, to electrophilic atoms.12 The substrate required
for such a semipinacol ring expansion reaction could ultimately
derive from a carbonyl addition reaction between an organo-
metallic of structure c and a substituted cyclobutanone d.
(6) For a review, see: (a) Dake, G. Tetrahedron 2006, 62, 3467–3492. (b)
de Sousa, A. L.; Pilli, R. A. Org. Lett. 2005, 7, 1617–1619. (c) Koviach, J. L.;
Forsyth, C. J. Tetrahedron Lett. 1999, 40, 8529–8532. (d) Wright, D. L.; Schulte,
J. P., II; Page, M. A Org. Lett. 2000, 2, 1847–1850. (e) Huxford, T.; Simpkins,
N. S. Synlett 2004, 2295–2298. (f) White, J. D.; Blakemore, P. R.; Korf, E. A.;
Yokochi, A. F. T. Org. Lett. 2001, 3, 413–415. (g) Takasu, K.; Ohsato, H.;
Ihara, M. Org. Lett. 2003, 5, 3017–3020. (h) Nieczypor, P.; Mol, J. C.; Bespalova,
N. B.; Bubnov, Y. N. Eur. J. Org. Chem. 2004, 812–819. (i) Lee, S.; Zhao, Z.
(S.). Org. Lett. 1999, 1, 681–683. (j) Lee, S.; Zhao, Z., (S.) Tetrahedron Lett.
1999, 40, 7921–7924. (k) Arini, L. G.; Szeto, P.; Hughes, D. L.; Stockman,
R. A. Tetrahedron Lett. 2004, 45, 8371–8374. (l) Yang, S.-H.; Caprio, V. Synlett
2007, 1219–1222. (m) Roulland, E.; Chiaroni, A.; Husson, H. P. Tetrahedron
Lett. 2005, 46, 4065–4068. (n) Fernandez-Gonzalez, M.; Alonso, R. J. Org. Chem.
2006, 71, 6767–6775. (o) Moore, S. P.; Coote, S. C.; O’Brien, P.; Gilday, J.
Org. Lett. 2006, 8, 5145–5148. (p) Kim, H.; Seo, J. H.; Shin, K. J.; Kim, D. J.;
Kim, D. Heterocycles 2006, 70, 143. (q) Adrien, A.; Gais, H.-J.; Kohler, F.;
Runsink, J.; Raabe, G. Org. Lett. 2007, 9, 2155–2158.
(8) (a) Dake, G. R.; Fenster, M. D. B.; Hurley, P. B.; Patrick, B. O. J. Org.
Chem. 2004, 69, 5668–5675. (b) Hurley, P. B.; Dake, G. R. Synlett 2003, 14,
2131–2134. (c) Dake, G. R.; Fenster, M. D. B.; Fleury, M.; Patrick, B. O. J.
Org. Chem. 2004, 69, 5676–5683. (d) Fenster, M. D. B.; Patrick, B. O.; Dake,
G. R. Org. Lett. 2001, 3, 2109–2112.
(9) (a) Planas, L.; Perard-Viret, J.; Royer, J.; Selkti, M.; Thomas, A. Synlett
2002, 1629–1632. (b) Planas, L.; Perard-Viret, J.; Royer, J. J. Org. Chem. 2004,
69, 3087–3092. (c) Eom, K. D.; Raman, J. V.; Kim, H.; Cha, J. K. J. Am. Chem.
Soc. 2003, 125, 5415. (d) Li, J.; Jeong, S.; Esser, L.; Harran, P. G. Angew. Chem.,
Int. Ed. 2001, 40, 4765. (e) Overman, L. E.; Pennington, L. D. J. Org. Chem.
2003, 68, 7143. For reviews on the pinacol reaction, see: (f) Rickborn, B. In
ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon:
Oxford, U.K., 1991; Vol. 3, p 721. (g) Coveney, D. J. In ComprehensiVe Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, U.K., 1991; Vol.
3, p 777.
(7) This work is taken in part from: Hurley, P. B. Ph.D. Thesis, University
of British Columbia, 2006.
4132 J. Org. Chem. Vol. 73, No. 11, 2008