A. Ammazzalorso et al. / Tetrahedron: Asymmetry 19 (2008) 989–997
997
(c 1.8, CHCl3); 1H NMR (CDCl3) d 1.80 (d, 3H,
Acknowledgements
J = 6.9 Hz, CH3), 4.98 (q, 1H, J = 6.9 Hz, CH), 6.73 (d,
1H, CH arom), 7.31–7.35 (m, 1H, CH arom), 7.47–7.51
(m, 3H, CH arom), 7.79–7.82 (m, 1H, CH arom), 8.30–
8.34 (m, 1H, CH arom); 13C NMR (CDCl3) d 18.7
(CH3), 72.5 (CH), 105.8, 121.7, 122.2, 125.7, 125.8 (CH
arom), 125.8 (C arom), 126.9, 127.7 (CH arom), 134.8,
153.2 (C arom), 177.8 (C@O). Anal. Calcd for C13H12O3:
C, 72.21; H, 5.59. Found: C, 72.34; H, 5.58.
The Italian Ministry for the University and the Research is
acknowledged for the financial support (Contracts
2006038520 and 2005033023). The authors gratefully
acknowledge Mrs. Maria Luisa Tricca for her precious
technical help.
References
´
1. Seco, J. M.; Ortiz, A.; Quinoa, E.; Riguera, R. Chem. Rev.
˜
4.1.4. General procedure for the preparation of diastereo-
meric esters (R,R)- and (R,S)-2g–i. Diastereomeric esters
(R,R)- and (R,S)-2g–i were readily obtained by Mitsunobu
coupling of (R)-1g–j with (R)- or (S)-ethyl mandelate, as
previously described for compounds 3g–j.
2004, 104, 17–118.
2. Wenzel, T. J.; Wilcox, J. D. Chirality 2003, 15, 256–270.
3. Seco, J. M.; Quinoa, E.; Riguera, R. Tetrahedron: Asymmetry
´
˜
2001, 12, 2915–2925.
´
4. Porto, S.; Seco, J. M.; Ortiz, A.; Quinoa, E.; Riguera, R. Org.
˜
Lett. 2007, 9, 5015–5018.
´
5. Ferreiro, M. J.; Latypov, Sh. K.; Quinoa, E.; Riguera, R. J.
˜
4.2. NMR spectroscopy
Org. Chem. 2000, 65, 2658–2666.
6. Iwamoto, H.; Kobayashi, Y.; Kawatani, T.; Suzuki, M.;
Fukazawa, Y. Tetrahedron Lett. 2006, 47, 1519–1523.
1H and 13C NMR spectra were recorded on a Varian
300 MHz instrument, using tetramethylsilane (TMS) as
an internal standard. All the compounds were dissolved
in CDCl3, (5 mg in 0.7 mL). For experiments at low tem-
perature, samples were allowed to equilibrate for 15 min
at each temperature before recording the spectra.
´
7. Latypov, Sh. K.; Seco, J. M.; Quinoa, E.; Riguera, R. J. Org.
˜
Chem. 1995, 60, 504–515.
´
8. Seco, J. M.; Latypov, Sh. K.; Quinoa, E.; Riguera, R.
˜
Tetrahedron 1997, 53, 8541–8564.
´
9. Seco, J. M.; Quinoa, E.; Riguera, R. J. Org. Chem. 1997, 6,
˜
7569–7574.
10. Trost, B. M.; Bunt, R. C.; Pulley, S. R. J. Org. Chem. 1994,
59, 4202–4205.
4.3. Computational methods
´
11. Latypov, Sh. K.; Seco, J. M.; Quinoa, E.; Riguera, R. J. Org.
˜
Chem. 1995, 60, 1538–1545.
´
All the calculations were performed with the Schro¨dinger
suite of programs. The conformational searches were car-
ried out on all the diastereomeric derivatives through MAC-
ROMODEL 9.0,25 using MMFF94s as force field and
Conjugate Gradient with Polak-Ribiere first derivatives
method as minimization algorithm. 3000 conformations
for each diastereomer were minimized, only those within
30 kJ/mol from the global minimum were recorded. Once
a conformational search was completed, the recorded con-
formations were subjected to a cluster analysis using
XCLUSTER.26 The conformations were clustered according
to their root mean square distances with respect to the
three dihedral angles determining the mutual positions of
12. Lopez, B.; Quinoa, E.; Riguera, R. J. Am. Chem. Soc. 1999,
˜
121, 9724–9725.
13. Yabuuchi, T.; Kusumi, T. J. Org. Chem. 2000, 65, 397–404.
14. Ichikawa, A.; Ono, H.; Hiradate, S.; Watanabe, M.; Harada,
N. Tetrahedron: Asymmetry 2002, 13, 1167–1172.
15. Tyrrell, E.; Tsang, M. W. H.; Skinner, G. A.; Fawcett, J.
Tetrahedron 1996, 52, 9841–9852.
16. Staels, B.; Dallongeville, J.; Auwerx, J.; Schoonjans, K.;
Leitersdorf, E.; Fruchart, J.-C. Circulation 1998, 98, 2088–
2093.
17. Chapman, M. J. Atherosclerosis 2003, 171, 1–13.
18. Brown, P. J.; Winegar, D. A.; Plunket, K. D.; Moore, L. B.;
Lewis, M. C.; Wilson, J. G.; Sundseth, S. S.; Koble, C. S.;
Wu, Z.; Chapman, J. M.; Lehmann, J. M.; Kliewer, S. A.;
Willson, T. M. J. Med. Chem. 1999, 42, 3785–3788.
19. Shi, G. Q.; Dropinski, J. F.; Zhang, Y.; Santini, C.; Sahoo, S.
P.Berger, J. P.;MacNaul, K. L.;Zhou, G.;Agrawal, A.;Alvaro,
R.; Cai, T.; Hernandez, M.; Wright, S. D.; Moller, D. E.; Heck,
J. V.; Meinke, P. T. J. Med. Chem. 2005, 48, 5589–5599.
20. Sauerberg, P.; Mogensen, J. P.; Jeppesen, L.; Bury, P. S.;
Fleckner, J.; Olsen, G. S.; Jeppesen, C. B.; Wulff, E. M.;
Pihera, P.; Havranek, M.; Polivka, Z.; Pettersson, I. Bioorg.
Med. Chem. Lett. 2007, 17, 3198–3202.
the phenyl ring and the L1/L2 substituents to the Cꢀ of
a
the carboxylic acid (Fig. 5). For each diastereomer, 10 clus-
ters were obtained, and their leading members, that is, the
minimum energy structure within each cluster, fully opti-
mized by means of density functional theory calculations
both in gas phase and in solution of CHCl3 using JAGUAR
6.0.27 Such calculations were performed using the B3LYP
exchange correlation functional, which is known to per-
form particularly well for organic molecules, and the
6-31G* basis set, except for compounds derived from acid
1a, for which an LACVP* basis set was employed, consist-
ing of the Los Alamos effective core potential and a double-
zeta valence basis set including the outermost core orbitals
for Br and the all electron 6-31G* basis set for all the
remaining atoms. Calculations in solutions were carried
out through the Poisson-Boltzmann continuum model
employing the following values for the dielectric constant
and probe radius to model CHCl3, e = 4.806 and
21. Yamazaki, Y.; Abe, K.; Toma, T.; Nishikawa, M.; Ozawa,
H.; Okuda, A.; Araki, T.; Oda, S.; Inoue, K.; Shibuya, K.;
Staels, B.; Fruchart, J.-C. Bioorg. Med. Chem. Lett. 2007, 17,
4689–4693.
22. Mitsunobu, O. Synthesis 1981, 1, 1–28.
23. Klyne, W.; Prelog, V. Experientia 1960, 16, 521–523.
24. Kane, S.; Hersh, W. H. J. Chem. Educ. 2000, 77, 1366.
25. MACROMODEL, Version 9.0; Schro¨dinger, LLC: New York,
NY, 2005.
26. Macromodel XCLUSTER, Version 9.0; Schro¨dinger, LLC: New
York, NY, 2005.
˚
27. JAGUAR, Version 6.0; Schro¨dinger, LLC: New York, NY, 2005.
r = 2.514 A.