T. Miyajima, Y. Matano, H. Imahori
SHORT COMMUNICATION
benzo[c]phospholes, which are the first examples of ther-
mally and chemically stable benzo[c]phospholes. It was re-
vealed that the optical and electrochemical properties of the
bithiophene-fused benzo[c]phospholes strongly depend on
the π-conjugation modes of the fused rings. Both experi-
mental and theoretical results demonstrate that the appro-
priately fused π systems are potential emitters with small
HOMO–LUMO energy gaps reaching into the near-infra-
red region. The chemical functionalization at the annulated
bithiophene moieties will allow us to further extend the
two-dimensional π networks. In this regard, the bithio-
phene-fused benzo[c]phospholes are highly promising
building blocks for tailoring P,S-containing hybrid π-conju-
gated materials toward optoelectronic applications.
[1]
For reviews, see: a) L. D. Quin, The Heterocyclic Chemistry of
Phosphorus, Wiley, New York, 1981; b) F. Mathey, Chem. Rev.
1988, 88, 429; c) L. D. Quin in Comprehensive Heterocyclic
Chemistry (Eds.: A. R. Katritzky, C. W. Rees, E. F. V. Scriven),
Elsevier, Oxford, 1996, vol. 2; d) F. Mathey, Phosphorus–Car-
bon Heterocyclic Chemistry: The Rise of a New Domain, Elsev-
ier, Oxford, 2001; e) F. Mathey, Angew. Chem. 2003, 115, 1616;
Angew. Chem. Int. Ed. 2003, 42, 1578.
[2]
[3]
For reviews, see: a) M. Hissler, P. W. Dyer, R. Réau, Coord.
Chem. Rev. 2003, 244, 1; b) T. Baumgartner, R. Réau, Chem.
Rev. 2006, 106, 4681 (Correction: 2007, 107, 303); c) P. W. Dyer,
R. Réau in Functional Organic Materials (Eds.: T. J. J. Müller,
U. H. F. Bunz), Wiley-VCH, Weinheim, 2007, pp. 119–177; d)
M. G. Hobbs, T. Baumgartner, Eur. J. Inorg. Chem. 2007, 3611.
a) C. Hay, D. L. Vilain, V. Deborde, L. Toupet, R. Réau, Chem.
Commun. 1999, 345; b) C. Hay, C. Fischmeister, M. Hissler, L.
Toupet, R. Réau, Angew. Chem. 2000, 112, 1882; Angew. Chem.
Int. Ed. 2000, 39, 1812; c) C. Hay, M. Hissler, C. Fischmeister,
J. Rault-Berthelot, L. Toupet, L. Nyulászi, R. Réau, Chem.
Eur. J. 2001, 7, 4222; d) C. Hay, C. Fave, M. Hissler, J. Rault-
Berthelot, R. Réau, Org. Lett. 2003, 5, 3467; e) C. Fave, M.
Hissler, T. Kárpáti, J. Rault-Berthelot, V. Deborde, L. Toupet,
L. Nyulászi, R. Réau, J. Am. Chem. Soc. 2004, 126, 6058.
a) E. Deschamps, L. Ricard, F. Mathey, Angew. Chem. 1994,
106, 1214; Angew. Chem. Int. Ed. Engl. 1994, 33, 1158; b)
S. S. H. Mao, T. D. Tilley, Macromolecules 1997, 30, 5566; c)
Y. Morisaki, Y. Aiki, Y. Chujo, Macromolecules 2003, 36, 2594;
d) T. Sanji, K. Shiraishi, M. Tanaka, Org. Lett. 2007, 9, 3611.
a) D. Delaere, M. T. Nguyen, L. G. Vanquickenborne, Phys.
Chem. Chem. Phys. 2002, 4, 1522; b) D. Delaere, M. T. Nguyen,
L. G. Vanquickenborne, J. Phys. Chem. A 2003, 107, 838; c) Y.-
L. Liu, J.-K. Feng, A.-M. Ren, J. Comput. Chem. 2007, 28,
2500.
a) C. Fave, T.-Y. Cho, M. Hissler, C.-W. Chen, T.-Y. Luh, C.-
C. Wu, R. Réau, J. Am. Chem. Soc. 2003, 125, 9254; b) H.-C.
Su, O. Fedhel, C.-J. Yang, T.-Y. Cho, C. Fave, M. Hissler, C.-
C. Wu, R. Réau, J. Am. Chem. Soc. 2006, 128, 983.
a) C. Fave, M. Hissler, K. Sénéchal, I. Ledoux, J. Zyss, R.
Réau, Chem. Commun. 2002, 1674; b) Y. Matano, T. Miyajima,
H. Imahori, Y. Kimura, J. Org. Chem. 2007, 72, 6200.
a) S. Kobayashi, M. Noguchi, Y. Tsubata, M. Kitano, H. Doi,
T. Kamioka, A. Nakazono, Jpn. Pat. 2003231741, 2003; b) Y.
Makioka, T. Hayashi, M. Tanaka, Chem. Lett. 2004, 33, 44.
See also ref.[6b]
Experimental Section
7a: To a mixture of 1a (110 mg, 0.30 mmol), Ti(OiPr)4 (0.088 mL,
0.30 mmol), and Et2O (9 mL) was added a solution of iPrMgCl
(2.0 m in ether, 0.30 mL, 0.60 mmol) at –60 °C. The resulting mix-
ture was stirred for 3 h at –40 °C, followed by the addition of
PhPCl2 (0.041 mL, 0.30 mmol) at this temperature. The resulting
suspension was warmed to 0 °C and stirred for 1 h. After stirring
for an additional 3 h at room temperature, the mixture was sub-
jected to short silica gel column chromatography (CH2Cl2). The
orange fraction was then collected and treated with AuCl(SMe2)
(90 mg, 0.30 mmol). The color of the solution turned to red in a
few seconds, and the mixture was concentrated under reduced pres-
sure. The solid residue was subjected to silica gel column
chromatography (CH2Cl2/hexane). The red fraction was collected,
evaporated, and washed with MeOH to give 7a as a red solid
[4]
[5]
[6]
1
(120 mg, 57%). M.p. 215 °C (dec). H NMR (400 MHz, CD2Cl2):
δ = 6.56 (d, J = 5.2 Hz, 2 H), 7.01 (d, J = 5.2 Hz, 2 H), 7.05 (br.,
2 H), 7.27 (br., 2 H), 7.32–7.42 (m, 4 H), 7.42–7.60 (m, 5 H), 7.79
(br., 2 H) ppm. 31P{1H} NMR (162 MHz, CD2Cl2): δ = +46.5
ppm. MS (MALDI-TOF): m/z = 707 [M]+. HRMS (FAB): calcd.
for C30H19AuClPS2 [M]+ 706.0020; found 706.0016.
[7]
[8]
4a: P(NMe2)3 (32 μL, 0.18 mmol) was added to a toluene solution
(5 mL) containing 7a (42 mg, 0.060 mmol). After stirring at room
temperature for 10 min, the mixture was concentrated under re-
duced pressure. The residue was washed with MeOH to give 4a as
an orange solid (26 mg, 91%). M.p. 175 °C (dec). 1H NMR
(400 MHz, CD2Cl2): δ = 6.85 (d, J = 5.2 Hz, 2 H), 7.02 (d, J =
5.2 Hz, 2 H), 7.10–7.24 (m, 5 H), 7.25–7.40 (m, 10 H) ppm.
13C{1H} NMR (100 MHz, CD2Cl2): δ = 122.8, 126.3, 127.4, 128.5
[9]
a) T. Baumgartner, T. Neumann, B. Wirges, Angew. Chem.
2004, 116, 6323; Angew. Chem. Int. Ed. 2004, 43, 6197; b) T.
Baumgartner, W. Bergmans, T. Kárpáti, T. Neumann, M. Ni-
eger, L. Nyulázi, Chem. Eur. J. 2005, 11, 4687; c) Y. Dienes, S.
Durben, T. Kárpáti, T. Neumann, U. Englert, L. Nyulázi, T.
Baumgartner, Chem. Eur. J. 2007, 13, 7487; d) A. Acharya, Y.
Koizumi, S. Seki, A. Saeki, S. Tagawa, Y. Ie, Y. Aso, J. Pho-
tochem. Photobiol. A 2005, 173, 161.
(d, JP,C = 9.9 Hz), 128.8, 128.9 (d, JP,C = 9.1 Hz), 129.9 (d, JP,C
=
[10]
[11]
T. C. Dinadayalane, G. N. Sastry, J. Chem. Soc. Perkin Trans.
2 2002, 1902.
7.4 Hz), 130.3 (d, JP,C = 1.7 Hz), 132.6 (d, JP,C = 3.3 Hz), 134.7 (d,
JP,C = 1.6 Hz), 134.9 (d, JP,C = 19.0 Hz), 136.2 (J = 14.9 Hz), 138.0
(d, JP,C = 14.9 Hz), 146.1 (d, JP,C = 3.3 Hz) ppm. 31P{1H} NMR
(162 MHz, CD2Cl2): δ = +24.6 ppm. MS (MALDI-TOF): m/z =
474 [M]+. HRMS (FAB): calcd. for C30H19PS2 [M]+ 474.0666;
found 474.0672.
Most of the benzo[c]phospholes reported have no substituent
at the benzo backbone and readily undergo Diels–Alder reac-
tions. The isolated benzo[c]phospholes bearing phosphonio
groups at the α-positions were reported to be highly moisture-
sensitive solids. See: a) J. M. Holland, D. W. Jones, J. Chem.
Soc., C 1970, 122; b) J. M. Holland, D. W. Jones, J. Chem. Soc.
Perkin Trans. 1 1973, 927; c) T. H. Chan, K. T. Nwe, Tetrahe-
dron Lett. 1973, 48, 4815; d) T. H. Chan, K. T. Nwe, Tetrahe-
dron 1975, 31, 2537; e) A. Schmidpeter, M. Thiele, Angew.
Chem. 1991, 103, 333; Angew. Chem. Int. Ed. Engl. 1991, 30,
308; f) A. Decken, F. Bottomley, B. E. Wilkins, E. D. Gill, Or-
ganometallics 2004, 23, 3683; g) R. A. Aitken in Science of Syn-
thesis (Eds.: D. Bellus, S. V. Ley, R. Noyori, M. Regitz, P. J.
Reider, E. Schaumann, I. Shinkai, E. J. Thomas, B. M. Trost),
Thieme, New York, 2000, vol. 10, pp. 809–815.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details, characterization data, and DFT compu-
tational results.
Acknowledgments
This work was partly supported by Japan Science and Technology
Agency in Research for Promoting Technological Seeds (No. 10-034).
258
www.eurjoc.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2008, 255–259