5118
H. Shimizu et al. / Bioorg. Med. Chem. Lett. 20 (2010) 5113–5118
D.; Morse, M. A.; Pancholi, K. D.; Rumsey, W.; Solanke, Y. E.; Williamson, R. J.
Med. Chem. 2009, 52, 3098.
20. Lorenzo, P.; Alvarez, R.; Ortiz, M. A.; Alvarez, S.; Piedrafita, F. J.; de Lera, Á. R. J.
Med. Chem. 2008, 51, 5431.
21. Nagarajan, S.; Doddareddy, M.; Choo, H.; Cho, Y.-S.; Oh, K.-S.; Lee, B.-H.; Pae, A.
N. Bioorg. Med. Chem. 2009, 17, 2759.
22. Wu, J.-P.; Fleck, R.; Brickwood, J.; Capolino, A.; Catron, K.; Chen, Z.; Cywin, C.;
Emeigh, J.; Foerst, M.; Ginn, J.; Hrapchak, M.; Hickey, E.; Hao, M.-H.; Kashem,
M.; Li, J.; Liu, W.; Morwick, T.; Nelson, R.; Marshall, D.; Martin, Leslie.; Nemoto,
P.; Potocki, I.; Liuzzi, M.; Peet, G. W.; Scouten, E.; Stefany, D.; Turner, M.;
Weldon, S.; Zimmitti, C.; Spero, D.; Kelly, T. A. Bioorg. Med. Chem. Lett. 2009, 19,
5547.
23. (a) Bonafoux, D. F.; Bonar, S. L.; Clare, M.; Donnelly, A. M.; Glaenzer, J. L.;
Guzova, J. A.; Huang, H.; Kishore, N. N.; Koszyk, F. J.; Lennon, P. J.; Libby, A.;
Mathialagan, S.; Oburn, D. S.; Rouw, S. A.; Sommers, C. D.; Tripp, C. S.; Vanella,
L. J.; Weier, R.; Wolfson, S. G.; Huang, H.-C. Bioorg. Med. Chem. 2010, 18, 403; (b)
Crombie, A. L.; Sum, F.-W.; Powell, D. W.; Hopper, D. W.; Torres, N.; Berger, D.
M.; Zhang, Y.; Gavriil, M.; Sadler, T. M.; Arndt, K. Bioorg. Med. Chem. Lett. 2010,
12, 3821.
mode well. It is inferred that imidazo[1,2-b]pyridazine derivatives
could show a binding mode like the type-II inhibitor.32
In conclusion, we have developed potent IKKb inhibitory agents
with the imidazo[1,2-b]pyridazine scaffold from HTS-hit 1. The po-
tency was improved by the modification of the 3- and 6-position to
8e and 9i. These compounds showed good kinase selectivity over
IKKa and some Ser/Thr kinases. From the interaction model study,
it is assumed that appropriate interactions in the pyrrolidine moi-
ety in the 3-position are formed. The structure–activity relation-
ship we have revealed is explained in this model. Compound 8e
is an attractive lead compound and the predicted binding mode
is useful for further development of potent IKKb inhibitor. In the
proceeding paper, we would like to report further investigations
of the modification of 8e with the strategy based on this interac-
tion model.
24. All test compounds are purified by preparative HPLC and are acquired as formic
acid or hydrochloric acid salt.
25. IKKb kinase inhibition assay: Test compound at various concentrations or
jBa (180 nM final concentration) and [
33P]ATP
References and notes
DMSO, biotinylated-GST-I
(1.5 M final concentration) were mixed with purified His-IKKb (20 nM final
concentration) in a 30 L volume of kinase buffer (25 mM Tris–HCl, pH 7.5,
l
l
1. Sen, R.; Baltimore, D. Cell 1986, 47, 921.
2. (a) Li, Q.; Verma, I. M. Nat. Rev. Immunol. 2002, 2, 725–734; (b) Hayden, M. S.;
Ghosh, S. Cell 2008, 132, 344.
10 mM MgCl2, 2 mM DTT, 5 mM b-glycerophosphate, 0.1 mM Na3VO4, 0.01%
BSA) in a polypropylene 96-well plate. After incubation for 15 min at room
3. Brown, K. D.; Claudio, E.; Siebenlist, U. Arthritis Res. Ther. 2008, 10, 1.
4. Viatour, P.; Merville, M. P.; Bours, V.; Chariot, A. Trends Biochem. Sci. 2005, 30,
43.
temperature, the reaction was stopped by adding 30
aliquot from the reaction solution was transferred to Streptavidin FlashPlate
(Perkin Elmer) and 30 L of kinase buffer was dispensed. After shaking the
plate for 2 h at room temperature, the plate was washed four times with
300 L of PBS containing 0.05% Tween-20, and the radioactivity was measured
lL of 0.3 M EDTA. A 30 lL
l
5. Senftleben, U.; Karin, M. Crit. Care Med. 2002, 30, S18.
l
6. (a) Karin, M.; Lin, A. Nat. Immunol. 2002, 3, 221; (b) Coussens, L. M.; Werb, Z.
Nature 2002, 420, 860; (c) Kim, H. J.; Hawke, N.; Baldwin, A. S. Cell Death Differ.
2006, 13, 738; (d) Perkins, N. D.; Gilmore, T. D. Cell Death Differ. 2006, 13, 759.
7. (a) Asagiri, M.; Takayanagi, H. Bone 2007, 40, 251; (b) Ruocco, M. G.; Maeda, S.;
Park, J.-M.; Lawrence, T.; Hsu, L.-C.; Cao, Y.; Schett, G.; Wagner, E. F.; Karin, M. J.
Exp. Med. 2005, 201, 1677.
8. Tak, P. P.; Firestein, G. S. J. Clin. Invest. 2001, 107, 7.
9. (a) Hayden, M. S.; Ghosh, S. Genes Dev. 2004, 18, 2195; (b) Häcker, H.; Karin, M.
Sci. STKE 2006, 357. re13.
10. (a) DiDonato, J. A.; Hayakawa, M.; Rothwarf, D. M.; Zandi, E.; Karin, M. Nature
1997, 388, 548; (b) Mercurio, F.; Zhu, H.; Murray, B. W.; Shevchenko, A.;
Bennett, B. L.; Li, J.; Young, D. B.; Barbosa, M.; Mann, M.; Manning, A.; Rao, A.
Science 1997, 278, 860; (c) Woronicz, J. D.; Gao, X.; Cao, Z.; Rothe, M.; Goeddel,
D. V. Science 1997, 278, 866.
11. Karin, M.; Yamamoto, Y.; Wang, Q. M. Nat. Rev. Drug Disc. 2004, 3, 17.
12. (a) Blake, S. M.; Swift, B. A. Curr. Opin. Pharmacol. 2004, 4, 276; (b) Burke, J. R.;
Strnad, J. Trends Pharmacol. Sci. 2007, 28, 142.
by TopCount-HTS.
26. Kinase selectivity assay: The kinase inhibition assay for IKKa, CDK2, PDK1,
GSK3b, JNK3 and p38
enzyme as described above in IKKb kinase inhibition assay.
27. Inhibition of TNF release by THP-1 cell: THP-1 cells were treated with 100 nM
calcitriol in RPMI-1640 medium (supplemented with inactivated 10% (v/v)
fetal bovine serum (FBS), 50 units/mL penicillin, 50 g/mL streptomycin) for 3–
a was performed at the Km of ATP for each recombinant
a
l
4 days. After an overnight culture with RPMI-1640 medium without calcitriol,
the cells were centrifuged and resuspended in RPMI-1640 medium containing
25 mM HEPES. The cells (1.5 ꢁ 105 cells/mL) were seeded to a 96-well tissue
culture plate and added with the test compound (0.1
lipopolysaccharide (LPS, E. coli O111:B4, Calbiochem) (0.1
l
g/mL) and
g/mL)
simultaneously. After incubation for 4 h at 37 °C in 5% CO2, the cell culture
supernatant was obtained by centrifugation (2000 rpm at 5 min, 4 °C). TNF
l
a
concentration in culture supernatant was measured by ELISA assay as
described by the manufacturer’s instructions (BD Bioscience).
28. Stanovnik, B.; Tisler, M. Tetrahedron 1967, 23, 387.
29. Kunishima, M.; Kawachi, C.; Iwasaki, F.; Terao, K.; Tani, S. Tetrahedron Lett.
1999, 40, 5327.
13. (a) Choy, E. H.; Panayi, G. S. N. Eng. J. Med. 2001, 344, 907; (b) Taylor, P. C.;
Feldmann, M. Nat. Rev. Rheumatol. 2009, 5, 578; (c) Strand, V.; Singh, J. A. Drugs
2010, 70, 121.
14. (a) Palladino, M. A.; Bahjat, F. R.; Theodorakis, E. A.; Moldawer, L. L. Nat. Rev.
Drug Disc. 2003, 2, 736; (b) Wong, M.; Ziring, D.; Korin, Y.; Desai, S.; Kim, S.; Lin,
J.; Gjertson, D.; Braun, J.; Reed, E.; Singh, R. R. Clin. Immunol. 2008, 126, 121.
15. Coish, P. D. G.; Wickens, P. L.; Lowinger, T. B. Expert Opin. Ther. Patents 2006,
16(1), 1.
16. Bamborough, P.; Callahan, J. F.; Christopher, J. A.; Kerns, J. K.; Liddle, J.; Miller,
D. D.; Morse, M. A.; Rumsey, W. L.; Williamson, R. Curr. Top. Med. Chem. 2009, 9,
623.
30. The model was constructed based mainly on X-ray structures of PKA Ca,
DAPK1 and CDK2 as templates. DFG-in conformation (details are not shown).
31. (a) Liu, Y.; Gray, N. S. Nat. Chem. Biol. 2006, 2, 358; (b) Okram, B.; Nagle, A.;
Adrián, F. J.; Lee, C.; Ren, P.; Wang, X.; Sim, T.; Xie, Y.; Wang, X.; Xia, G.;
Spraggon, G.; Warmuth, M.; Liu, Y.; Gray, N. S. Chem. Biol. 2006, 13, 779; (c)
Liao, J. J. J. Med. Chem. 2007, 50, 409; (d) Ghose, A. K.; Herbertz, T.; Pippin, D. A.;
Salvino, J. M.; Mallamo, J. P. J. Med. Chem. 2008, 51, 5149; (e) Kufareva, I.;
Abagyan, R. J. Med. Chem. 2008, 51, 7921.
17. Hideyuki Sugiyama, H.; Yoshida, M.; Mori, K.; Kawamoto, T.; Sogabe, S.; Takagi,
T.; Oki, H.; Tanaka, T.; Kimura, H.; Ikeura, Y. Chem. Pharm. Bull. 2007, 55, 613.
18. (a) Kempson, J.; Spergel, S. H.; Guo, J.; Quesnelle, C.; Gill, P.; Belanger, D.;
Dyckman, A. J.; Li, T.; Watterson, S. H.; Langevine, C. M.; Das, J.; Moquin, R. V.;
Furch, J. A.; Marinier, A.; Dodier, M.; Martel, A.; Nirschl, D.; Kirk, K. V.; Burke, J.
R.; Pattoli, M. A.; Gillooly, K.; McIntyre, K. W.; Chen, L.; Yang, Z.; Marathe, P. H.;
Wang-Iverson, D.; Dodd, J. H.; McKinnon, M.; Barrish, J. C.; Pitts, W. J. J. Med.
Chem. 2009, 52, 1994; (b) Kempson, J.; Guo, J.; Das, J.; Moquin, R. V.; Spergel, S.
H.; Watterson, S. H.; Langevine, C. M.; Dyckman, A. J.; Pattoli, M.; Burke, J. R.;
Yang, X.; Gillooly, K. M.; McIntyre, K. W.; Chen, L.; Dodd, J. H.; McKinnon, M.;
Barrish, J. C.; Pitts, W. J. Bioorg. Med. Chem. Lett. 2009, 19, 2646.
19. Christopher, J. A.; Bamborough, P.; Alder, C.; Campbell, A.; Cutler, G. J.; Down,
K.; Hamadi, A. M.; Jolly, A. M.; Kerns, J. K.; Lucas, F. S.; Mellor, G. W.; Miller, D.
32. A homology model of IKKb catalytic domain was built using Prime 1.5
(Schrödinger, LLC) with five kinase X-ray structures as templates, including the
structures of CDK2 (Moshinsky, D. J., Bellamacina, C. R.; Boisvert, D. C.; Huang,
P.; Hui, T.; Jancarik, J.; Kim, S. H.; Rice, A. G. Biochem. Biophys. Res. Commun.
2003, 310, 1026), BRAF (Wan, P. T.; Garnett, M. J.; Roe, S. M.; Lee, S.; Niculescu-
Duvaz, D.; Good, V. M.; Jones, C. M.; Marshall, C. J.; Springer, C. J.; Barford, D.;
Marais, R. Cell 2004, 116, 855), ABL (Schindler, T.; Bornmann, W.; Pellicena, P.;
Miller, W. T.; Clarkson, B.; Kuriyan, J. Science 2000, 289, 1938), FLT3 (Griffith, J.;
Black, J.; Faerman, C.; Swenson, L.; Wynn, M.; Lu, F.; Lippke, J.; Saxena, K. Mol.
Cell. 2004, 13, 169) and KIT (Mol, C. D.; Dougan, D. R.; Schneider, T. R.; Skene, R.
J.; Kraus, M. L.; Scheibe, D. N.; Snell, G. P.; Zou, H.; Sang, B. C.; Wilson, K. P. J.
Biol. Chem. 2004, 279, 31655). Docking studies into the homology model were
performed using Glide 4.0 (Schrödinger, LLC).