J.-U. Peters et al. / Tetrahedron Letters 49 (2008) 4029–4032
4031
HOOC
PO(OEt)2
HOOC
PO(OEt)2
1 4 -H
1 4 -Me
PO(OEt)2
O
O
a (90%), b (58%)
a (90%), b (87%)
N
H
N
H
O
NH2
17
16
18
PO(OEt)2
S
S
S
O
1 4 -H
1 4 -Me
N
N
N
O
NH2
O
N
N
H
a (44%), b (14%)
a (50%), b (quant.)
H
20
Knoevenagel product
19
21
HWE olefination product
Scheme 6. Reagents and conditions: (a) 14 (2 equiv), EDC (2 equiv), DMF, rt, overnight, (b) DBU, LiCl, THF, 1 h rt. 19 was only partially converted in
the initial amide-forming step despite an excess of reagents, which is the main reason for the relatively low yields in step (a). The amide intermediates
(omitted for clarity) were isolated and characterised in all the cases.
2. Knorr, L. Justus Liebig’s Ann. Chem. 1886, 236, 69–115.
3. A compilation of current methods can be found in: Park, K. K.; Lee,
14-Me, the HWE olefination product 21 was formed. Thus,
at least when using the Masamune–Roush conditions for
J. J. Tetrahedron 2004, 60, 2993–2999.
the olefination step, this synthetic method seems to be
4. (a) Robl, J. A. Synthesis 1991, 56–58; (b) Sasakura, K.; Sugasawa, T.
limited to the preparation of 3-substituted quinolones.
Synth. Commun. 1987, 17, 741–753.
In summary, this Letter describes a convenient method
to prepare 2-quinolones from aminophenylketones under
mild conditions, which complements existing methods.
The transformation can be carried out in two steps or as
a one-pot reaction. 2-Quinolones with electron-donating
as well as –withdrawing substituents (9, 11, 13, 15, and
18) and a heterocyclic quinolone analogue (21) could be
prepared in generally good yields. Experimental details
for the preparation of 11 as a typical example can be found
in Ref. 17. The method is limited to the use of a-substituted
HWE reagents, as the a-unsubstituted phosphonate 14-H
gave rise to Knoevenagel-type products rather than HWE
olefination products.
5. (a) Blackburn, T. P.; Cox, B.; Guildford, A. J.; Le Count, D. J.;
Middlemiss, D. N.; Pearce, R. J.; Thornber, C. W. J. Med. Chem.
1987, 30, 2252–2259; (b) Camps, R. Arch. Pharm. (Weinheim, Ger.)
1901, 591–610.
6. (a) Hewawasam, P.; Chen, N.; Ding, M.; Natale, J. T.; Boissard, C.
G.; Yeola, S.; Gribkoff, V. K.; Starrett, J.; Dworetzky, S. I. Bioorg.
Med. Chem. Lett. 2004, 14, 1615–1618; (b) Rehwald, M.; Bellmann,
P.; Jeschke, T.; Gewald, K. J. Prakt. Chem. 2000, 342, 371–378; (c)
Esteve, M. E.; Gaozza, C. H. J. Heterocycl. Chem. 1981, 18, 1061–
1063.
7. (a) Goodell, J. R.; Puig-Basagoiti, F.; Forshey, B. M.; Shi, P.-Y.;
Ferguson, D. M. J. Med. Chem. 2006, 49, 2127–2137; (b) Angibaud,
P. R.; Venet, M. G.; Filliers, W.; Broeckx, R.; Ligny, Y. A.; Muller,
P.; Poncelet, V. S.; End, D. W. Eur. J. Med. Chem. 2004, 3, 479–486;
(c) Boy, K. M.; Guernon, J. M.; Sit, S.-Y.; Xie, K.; Hewawasam, P.;
Boissard, C. G.; Dworetzky, S. I.; Natale, J.; Gribkoff, V. K.; Lodge,
N.; Starrett, J. E. Bioorg. Med. Chem. Lett. 2004, 14, 5089–5093; (d)
Angibaud, P.; Bourdrez, X.; End, D. W.; Freyne, E.; Janicot, M.;
Lezouret, P.; Ligny, Y.; Mannens, G.; Damsch, S.; Mevellec, L.;
Meyer, C.; Muller, P.; Pilatte, I.; Poncelet, V.; Roux, B.; Smets, G.;
Van Dun, J.; Van Remoortere, P.; Venet, M.; Wouters, W. Bioorg.
Med. Chem. Lett. 2003, 13, 4365–4369; (e) Hino, K.; Kawashima, K.;
Oka, M.; Nagai, Y.; Uno, H.; Matsumoto, J. Chem. Pharm. Bull.
1989, 37, 110–115.
Acknowledgement
This work was performed as a project of the internship
program ‘Schweizer Jugend forscht’.
References and notes
8. Kolodyazhnyi, O. I.; Grishkun, E. V.; Yakovlev, V. I.; Kukhar, V. P.
Zh. Obshch. Khim. 1990, 60, 1050–1053.
9. Cordi, A. A.; Desos, P.; Ruano, E.; Al-Badri, H.; Fugier, C.;
Chapman, A. G.; Meldrum, B. S.; Thomas, J.-Y.; Roger, A.; Lestage,
P. Farmaco 2002, 57, 787–802.
10. Alabaster, C. T.; Bell, A. S.; Campbell, S. F.; Ellis, P.; Henderson, C.
G.; Morris, D. S.; Roberts, D. A.; Ruddock, K. S.; Samuels, G. M.
R.; Stefaniak, M. H. J. Med. Chem. 1989, 32, 575–583.
11. Bestmann, H. J.; Schmidt, M.; Schobert, R. Synthesis 1988, 49–
53.
12. (a) Chen, J. J.; Drach, J. C.; Townsend, L. B. J. Org. Chem. 2003, 68,
4170–4178; (b) Westman, J.; Orrling, K. Comb. Chem. High
Throughput Screening 2002, 5, 571–574.
1. (a) Fujioka, T.; Teramoto, S.; Mori, T.; Hosokawa, T.; Sumida, T.;
Tominaga, M.; Yabuuchi, Y. J. Med. Chem. 1992, 35, 3607–3612; (b)
Angibaud, P.; Bourdrez, X.; Devine, A.; End, D. W.; Freyne, E.;
Ligny, Y.; Muller, P.; Mannens, G.; Pilatte, I.; Poncelet, V.; Skrzat,
S.; Smets, G.; Van Dun, J.; Van Remoortere, P.; Venet, M.; Wouters,
W. Bioorg. Med. Chem. Lett. 2003, 13, 1543–1547; (c) Uchida, M.;
Tabusa, F.; Komatsu, M.; Morita, S.; Kanbe, T.; Nakagawa, K.
Chem. Pharm. Bull. 1987, 35, 853–856; (d) Tamura, Y.; Yoshizaki, S.;
Watanabe, K. J. Med. Chem. 1981, 24, 634–636; (e) Alabaster, C. T.;
Bell, A. S.; Campbell, S. F.; Ellis, P.; Henderson, C. G.; Morris, D. S.;
Roberts, D. A.; Ruddock, K. S.; Samuels, G. M. R.; Stefaniak, M. H.
J. Med. Chem. 1989, 32, 575–583; (f) Davies, S. L.; Castaner, J. Drugs
Fut. 2005, 30, 1219–1224; (g) Joensson, S.; Andersson, G.; Fex, T.;
Fristedt, T.; Hedlund, G.; Jansson, K.; Abramo, L.; Fritzson, I.;
Pekarski, O.; Runstroem, A.; Sandin, H.; Thuvesson, I.; Bjoerk, A. J.
Med. Chem. 2004, 47, 2075–2088.
13. Cappelli, A.; Anzini, M.; Vomero, S.; Canullo, L.; Mennuni, L.;
Makovec, F.; Doucet, E.; Hamon, M.; Menziani, M. C.; De
Benedetti, P. G.; Bruni, G.; Romeo, M. R.; Giorgi, G.; Donati, A.
J. Med. Chem. 1999, 42, 1556–1575.