Intramolecular Allylation of Aldehydes
allylating agents (crotylboranes11 and crotylboronates12 being
the most important examples), which react with aldehydes
through well-defined chair-like transition state conformations,
and offer a straightforward route to both syn and anti homoal-
lylic alcohol products through judicious choice of the appropriate
crotylmetal stereoisomer. That said, crotylsilanes have been used
successfully in enantio- and diastereoselective synthesis. Until
recently, crotylsilanes, which incorporate a stereogenic center
at the R-site,2c,13 have been the most successful,14 with the
reagents developed by Panek and co-workers2c,13a,b providing
the paradigm in this field (Scheme 1, eq 2). More recently,
Leighton and co-workers have introduced crotylsilane reagents,
which use chirality embedded in the silyl ligands to impart
stereoselectivity (Scheme 1, eq 3),15–17 while Denmark18 and
others19 have introduced chiral Lewis base activators for use
with allyltrichlorosilanes (Scheme 1, eq 4). These last two
strategies can both be used to effect highly enantio- and
diastereoselective allylation reactions; however, these classes
of crotylsilane react rather differently to the anti SE′ pathway
followed by standard crotyltrialkylsilanes.18a,b,20
SCHEME 1. Stereoselective Allylation of Aldehydes
Employing Allylsilanes
An alternative approach to controlling the stereoselectivity
of reactions employing γ-substituted allyltrialkylsilanes is to
incorporate the nucleophile into the same molecule as the
electrophile and carry out an intramolecular allylation. Providing
the number of atoms linking the two reacting functionalities is
not too small, such that geometrical constraints prevent the
nucleophile and electrophile from approaching sufficiently
closely to one another to react, nor too large, such that the
reaction resembles an intermolecular reaction or is disfavored
on entropic grounds, this type of intramolecular allylation
provides a powerful method for generating rings in a stereo-
controlled fashion.21 We have been interested in using a
temporary silicon connection22 to exploit the advantages as-
sociated with this type of intramolecularization strategy in
(11) Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1989, 54, 1570–
1576.
the stereoselectivity of their reaction with aldehydes can be
controlled in a variety of ways. Carreira and co-workers
introduced a powerful chiral Lewis acid derived from TiF4 and
binol.8 With use of this activation system, allylsilanes, which
are unsubstituted at the γ-terminus, react with aldehydes with
excellent levels of enantioselectivity (Scheme 1, eq 1).8 This
type of reagent-controlled strategy has rarely been extended to
achiral crotylsilanes and other γ-substituted allylsilanes, where
both diastereoselectivity and enantioselectivity need to be
considered.9 This is probably a result of (i) the relatively poorly
defined open transition states through which allyltrialkylsilanes
(type II allyl metals10) react, making the control of relative
stereoselectivity difficult, and (ii) competition from type I
(12) (a) Roush, W. R.; Adam, M. A.; Walts, A. E.; Harris, D. J. J. Am. Chem.
Soc. 1986, 108, 3422–3434. (b) Roush, W. R.; Walts, A. E.; Hoong, L. K. J. Am.
Chem. Soc. 1985, 107, 8186–8190.
(13) (a) Panek, J. S.; Cirillo, P. F. J. Org. Chem. 1993, 58, 999–1002. (b)
Panek, J. S.; Yang, M. J. Am. Chem. Soc. 1991, 113, 6594–6600. (c) Suginome,
M.; Iwanami, T.; Ito, Y. J. Am. Chem. Soc. 2001, 123, 4356–4357. (d) Hayashi,
T.; Konishi, M.; Ito, H.; Kumada, M. J. Am. Chem. Soc. 1982, 104, 4962–4963.
(e) Hayashi, T.; Konishi, M.; Kumada, M. J. Am. Chem. Soc. 1982, 104, 4963–
4965.
(14) Chiral allylsilanes, which incorporate stereochemical information into
the ꢀ- and γ-sites, have also been investigated: (a) Nativi, C.; Palio, G.; Taddei,
M. Tetrahedron Lett. 1991, 32, 1583–1586. (b) Nishigaichi, Y.; Takuwa, A.;
Jodai, A. Tetrahedron Lett. 1991, 32, 2383–2386.
(15) Hackman, B. M.; Lombardi, P. J.; Leighton, J. L. Org. Lett. 2004, 6,
4375–4377.
(16) The use of allylsilanes containing chiral ligands had previously met with
little success: (a) Nativi, C.; Ravida, N.; Ricci, A.; Seconi, G.; Taddei, M. J.
Org. Chem. 1991, 56, 1951–1955. (b) Wei, Z. Y.; Wang, D.; Li, J. S.; Chan,
T. H. J. Org. Chem. 1989, 54, 5768–5774. (c) Chan, T. H.; Wang, D. Tetrahedron
Lett. 1989, 30, 3041–3044. (d) Coppi, L.; Mordini, A.; Taddei, M. Tetrahedron
Lett. 1987, 28, 969–972.
(5) (a) Buckle, M. J. C.; Fleming, I.; Gil, S.; Pang, K. L. C. Org. Biomol.
Chem. 2004, 2, 749–769. (b) Denmark, S. E.; Almstead, N. G. J. Org. Chem.
1994, 59, 5130–5132. (c) Denmark, S. E.; Weber, E. J. HelV. Chim. Acta 1983,
66, 1655–1660.
(17) Allylsilanes with Si-centered chirality have also been investigated: (a)
Hathaway, S. J.; Paquette, L. A. J. Org. Chem. 1983, 48, 3351-3353.
(18) (a) Denmark, S. E.; Fu, J. P.; Coe, D. M.; Su, X.; Pratt, N. E.; Griedel,
B. D. J. Org. Chem. 2006, 71, 1513–1522. (b) Denmark, S. E.; Fu, J. P.; Lawler,
M. J. J. Org. Chem. 2006, 71, 1523–1536. (c) Denmark, S. E.; Fu, J. P. Chem.
Commun. 2003, 167–170. (d) Denmark, S. E.; Fu, J. P. J. Am. Chem. Soc. 2001,
123, 9488–9489. (e) Denmark, S. E.; Coe, D. M.; Pratt, N. E.; Griedel, B. D. J.
Org. Chem. 1994, 59, 6161–6163.
(6) For computational investigations on the Lewis acid-mediated reaction of
allyltrialkylsilanes with aldehydes see: (a) Tietze, L. F. Kinzel, T. Schmatz, S.
J. Am. Chem. Soc. 2006, 128, 11483-11495. (b) Mayer, P. S.; Morton, T. H.
J. Am. Chem. Soc. 2002, 124, 12928–12929. (c) Bottoni, A.; Costa, A. L.; Di
Tommaso, D.; Rossi, I.; Tagliavini, E. J. Am. Chem. Soc. 1997, 119, 12131–
12135.
(7) Yamamoto, Y. Acc. Chem. Res. 1987, 20, 243–249.
(8) Gauthier, D. R.; Carreira, E. M. Angew. Chem., Int. Ed. Engl. 1996, 35,
2363–2365.
(19) For recent reviews see: (a) Malkov, A. V.; Kocovsky, P. Eur. J. Org.
Chem. 2007, 29–36. (b) Orito, Y.; Nakajima, M. Synthesis 2006, 1391–1401,
and references cited therein.
(9) See also: (a) Ishihara, K. Mouri, M. Gao, Q. Maruyama, T. Furuta, K.
Yamamoto, H. J. Am. Chem. Soc. 1993, 115, 11490-11495. (b) Aoki, S.;
Mikami, K.; Terada, M.; Nakai, T. Tetrahedron 1993, 49, 1783–1792.
(10) For the classification of allyl metals see: (a) Hoffmann, R. W. Angew.
Chem., Int. Ed. Engl. 198221555-566. (b) Reference 5c.
(20) Zhang, X.; Houk, K. N.; Leighton, J. L. Angew. Chem., Int. Ed. 2005,
44, 938–941.
(21) (a) Langkopf, E.; Schinzer, D. Chem. ReV. 1995, 95, 1385–1408. (b)
Schinzer, D. Synthesis 1988, 263–273.
J. Org. Chem. Vol. 73, No. 14, 2008 5463