SCHEME 1. Methods for Preparing Fluorinated r-Imino
Esters
Selective Formal Transesterification of
Fluorinated 2-(Trimethylsilyl)ethyl r-Imino
Esters Mediated by TBAF
Santos Fustero,*,†,‡ Mar´ıa Sa´nchez-Rosello´,†
Vanessa Rodrigo,‡ Amador Garc´ıa,‡ Silvia Catala´n,† and
Carlos del Pozo†
Departamento de Qu´ımica Orga´nica, UniVersidad de
Valencia, E-46100 Burjassot, Spain, and Laboratorio de
Mole´culas Orga´nicas, Centro de InVestigacio´n Pr´ıncipe
Felipe, E-46013 Valencia, Spain
santos.fustero@uV.es
and difluoroserine or difluorocysteine derivatives.6 Furthermore,
FRIE have also been used as substrates for the preparation of
other non-natural fluorinated nitrogen derivatives, such as cyclic
and acyclic fluorinated quaternary R-amino acids7 and difluo-
romethyl aziridines.8
ReceiVed March 12, 2008
Few different methodologies that gain access to fluorinated
R-imino esters have been described in the literature, namely
aza-Wittig reactions,7f,h condensation of carbamates9 or amines7b,10
with trifluoropyruvates, and palladium-catalyzed alkoxycarbo-
nylation of fluorinated imidoyl iodides11 (Scheme 1). The scope
of both, the aza-Wittig protocol and the reaction with amines
or carbamates, is limited since they involve the condensation
with a fluorinated R-keto ester (it is noteworthy that only ethyl
and methyl trifluoropyruvates are commercially available). In
addition, the condensation reaction is highly dependent on the
nature of the amine.12 On the other hand, the alkoxycarbony-
lation reaction offers more possibilities in the substitution pattern
of the final products, due to the easy preparation of the starting
imidoyl iodides. However, this reaction usually requires rela-
tively long reaction times and it is also sensitive to the steric
hindrance of the alcohol nucleophiles. Thus, in general, primary
alcohols react faster and give higher chemical yields than
secondary or tertiary ones.11
The scope of the transesterification reaction between ꢀ-flu-
orinated R-imino esters and various electrophiles in the
presence of TBAF as fluorine source is described. The
reaction is highly selective for alkyl iodides, bromides, and
mesylates, while alkyl chlorides react at a significantly slower
rate and tosylates do not react under the reaction conditions.
This methodology represents a simple and useful alternative
for the preparation of a wide variety of fluorinated R-imino
esters.
Fluorinated R-imino esters (FRIE) are important building
blocks in fluorine chemistry. They are synthetic intermediates
for the preparation of ꢀ-fluorinated R-amino acids,1 compounds
that are witnessing a growing interest in medicinal, agricultural,
and material sciences. Thus, starting from fluorinated R-imino
esters, the synthesis of several synthetic analogues of naturally
occurring amino acids has been devised, such as trifluoroalani-
nates,2 trifluoromethyl aspartic acids,3 difluoro and trifluoro-
methyl ornithine,4 difluoroglutamic acids and difluoroprolines,5
(6) Mae, M.; Amii, H.; Uneyama, K. Tetrahedron Lett. 2000, 41, 7893–
7896.
(7) (a) Fustero, S.; Flores, S.; Cun˜at, A. C.; Jime´nez, D.; del Pozo, C.; Bueno,
J.; Sanz-Cervera, J. F. J. Fluorine Chem. 2007, 128, 1248–1254. (b) Chaume,
G.; Van Severen, M.-C.; Marinkovic, S.; Brigaud, T. Org. Lett. 2006, 8, 6123–
6126. (c) Fustero, S.; Sa´nchez-Rosello´, M.; Rodrigo, V.; del Pozo, C.; Sanz-
Cervera, J. F.; Simo´n, A.; Ram´ırez de Arellano, C. Org. Lett. 2006, 8, 4129–
4132. (d) Osipov, S. N.; Artyushin, O. I.; Kolomiets, A. F.; Bruneau, C.; Picquet,
M.; Dixneuf, P. H. Eur. J. Org. Chem. 2001, 3891–3897. (e) Se´rneril, D.; Le
Noˆtre, G.; Bruneau, C.; Dixneuf, P. H.; Kolomiets, A. F.; Osipov, S. N. New
J. Chem. 2001, 25, 16–18. (f) Asensio, A.; Bravo, P.; Crucianelli, M.; Farina,
A.; Fustero, S.; Garc´ıa-Soler, J.; Meille, S. V.; Panzeri, W.; Viani, F.; Volonterio,
A.; Zanda, M. Eur. J. Org. Chem. 2001, 1449–1458. (g) Osipov, S. N.; Bruneau,
C.; Picquet, M.; Kolomiets, A. F.; Dixneuf, P. H. Chem. Commun. 1998, 2053–
2054. (h) Bravo, P.; Crucianelli, M.; Vergani, B.; Zanda, M. Tetrahedron Lett.
1998, 39, 7771–7774. (i) Uneyama, K.; Yan, F.; Hirama, S.; Katagiri, T.
Tetrahedron Lett. 1996, 37, 2045–2048.
† Universidad de Valencia.
‡ Centro de Investigacio´n Pr´ıncipe Felipe.
(1) (a) Enantiocontrolled Synthesis of Fluoro-Organic Compounds; Solos-
honok, V. A., Ed.; Wiley-VCH Ltd.: New York, 1999; pp 391-418. (b) Fluorine-
containing Amino Acids. Synthesis and Properties; Kukhar, V. P., Soloshonok,
V. A., Eds.; John Wiley & Sons Ltd.: New York, 1995; pp 188-207.
(2) (a) Crucianelli, M.; De Angelis, F.; Lazzaro, F.; Malpezzi, L.; Volonterio,
A.; Zanda, M. J. Fluorine Chem. 2004, 125, 573–577. (b) Abe, H.; Amii, H.;
Uneyama, K. Org. Lett. 2001, 3, 313–315. (c) Sakai, T.; Yan, F.; Kashino, S.;
Uneyama, K. Tetrahedron 1996, 52, 233–244. (d) Sakai, T.; Yan, F.; Uneyama,
K. Synlett 1995, 753–754.
(8) Mae, M.; Matsuura, M.; Amii, H.; Uneyama, K. Tetrahedron Lett. 2002,
43, 2069–2072.
(9) (a) Burger, K.; Sewald, N. Synthesis 1990, 115–118. (b) Osipov, S. N.;
Goluveb, A. S.; Sewald, N.; Michel, T.; Kolomiets, A. F.; Fokin, A. V.; Burger,
K. J. Org. Chem. 1996, 61, 7521–7528.
(3) Lazzaro, F.; Crucianelli, M.; De Angelis, F.; Frigerio, M.; Malpezzi, L.;
Volonterio, A.; Zanda, M. Tetrahedron: Asymmetry 2004, 15, 889–893.
(4) Osipov, S. N.; Goluveb, A. S.; Sewald, N.; Burger, K. Tetrahedron Lett.
1998, 38, 5965–5966.
(10) Abid, M.; Teixera, L.; To¨ro¨k, B. Org. Lett. 2008, 10, 933–935.
(11) (a) Watanabe, H.; Hashizume, Y.; Uneyama, K. Tetrahedron Lett. 1992,
33, 4333–4336. (b) Amii, H.; Kishikawa, Y.; Kageyama, K.; Uneyama, K. J.
Org. Chem. 2000, 63, 3404–3408.
(5) Suzuki, A.; Mae, M.; Amii, H.; Uneyama, K. J. Org. Chem. 2004, 69,
5132–5134.
(12) Soloshonok, V. A.; Kukhar, V. P. Tetrahedron 1997, 53, 8307–8314.
10.1021/jo800567a CCC: $40.75
Published on Web 06/21/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 5617–5620 5617