4128
M.-Y. Lei et al. / Tetrahedron Letters 49 (2008) 4125–4129
1968; pp 185–332; (c) Kelsey, D. R.; Bergman, R. G. J. Am. Chem. Soc. 1971, 93,
1953.
O
O
O
Et3N
R3
R3
•
+
Ph3P
CH2Cl2
rt
4. (a) Glukhovtsev, M. N.; Pross, A.; Radom, L. J. Am. Chem. Soc. 1994, 116, 5961;
(b) Lucchini, V.; Modena, G.; Pasquato, L. J. Am. Chem. Soc. 1995, 117, 2297; (c)
Kim, C. K.; Hyun, K. H.; Kim, C. K.; Lee, I. J. Am. Chem. Soc. 2000, 122, 2294; (d)
Bach, R. D.; Baboul, A. G.; Schlegel, H. B. J. Am. Chem. Soc. 2001, 123, 5787.
5. It was reported that intermolecular substitution reactions of b-halostyrenes
with thiolate and selenide anions occur with retention of the configuration, but
the reaction mechanisms were not revealed, see: (a) Marchese, G.; Naso, F.;
Modena, G. J. Chem. Soc. B 1968, 958; (b) Marchese, G.; Naso, F.; Modena, G. J.
Chem. Soc. B 1969, 290; (c) Tiecco, M.; Testaferri, L.; Tingoli, M.; Chianelli, D.;
Montanucci, M. Tetrahedron Lett. 1984, 25, 4975.
6. (a) Ochiai, M.; Oshima, K.; Masaki, Y. J. Am. Chem. Soc. 1991, 113, 7059; (b)
Okuyama, T.; Takino, T.; Sato, K.; Ochiai, M. J. Am. Chem. Soc. 1998, 120, 2275;
(c) Ochiai, M.; Nishi, Y.; Hirobe, M. Tetrahedron Lett. 2005, 46, 1863.
7. Shiers, J. J.; Shipman, M.; Hayes, J. F.; Slawin, A. M. Z. J. Am. Chem. Soc. 2004, 126,
6868.
8. (a) Ando, K.; Kitamura, M.; Miura, K.; Narasaka, K. Org. Lett. 2004, 6, 2461; (b)
Miyauchi, H.; Chiba, S.; Fukamizu, K.; Ando, K.; Narasaka, K. Tetrahedron 2007,
63, 5940.
9. For reports on the synthesis of 2-alkylidenethietane derivatives, see: (a)
Bolster, J.; Kellogg, R. M. J. Org. Chem. 1980, 45, 4804; (b) Bonini, B. F.; Franchini,
M. C.; Fochi, M.; Mangini, S.; Mazzanti, G.; Alfredo Ricci, A. Eur. J. Org. Chem.
2000, 2391; (c) Ozaki, S.; Matsui, E.; Saiki, T.; Yoshinaga, H.; Ohmori, H.
Tetrahedron Lett. 1998, 39, 8121.
Cl
Ph
Ph
12
13
14 33%
R3
Br
1) LiBr, AcOH, 80 °C
2) NaBH4, MeOH, 0 °C
R3
OH
OH
+
Ph
Br
Ph
Z
-3i 21%
R3
E-3i 8%
O
1) TsCl, pyridine
S
Me
Z
-3i
-3i
2) MeCOS–K+, DMF
Br
Ph
Z
-7i 55%
(R3 =
n
-C9H19
)
O
R3
1) TsCl, pyridine
S
Me
E
2) MeCOS–K+, DMF
Br
Ph
E-7i 49%
Scheme 9.
10. Mandai, T.; Nokami, J.; Yano, T.; Yoshinaga, Y.; Otera, J. J. Org. Chem. 1984, 49,
172.
11. Uenishi, J.; Ohmi, M. Heterocycles 2003, 61, 365.
12. Moree, W. J.; van der Marel, G. A.; Liskamp, R. J. J. Org. Chem. 1995, 60, 5157.
13. Treatment of thiol 2b with K2CO3 even at room temperature gave a complex
mixture including disulfide 8.
O
R3
1.5 mol equiv. K2CO3
10 mol equiv. MeOH
R3
14. Experimental procedure for nucleophilic substitution of thioacetate 7b to 2-
alkylidenethietane 1b: To a solution of thioacetate 7b (103 mg, 0.329 mmol)
and MeOH (103 mg, 3.21 mmol) in DMI (16.5 mL) was added K2CO3 (68 mg,
0.492 mmol), and the mixture was stirred at 120 °C for 1.5 h. The reaction was
quenched by adding pH 9 ammonium buffer solution at 0 °C, and extracted
three times with diethyl ether. The combined extracts were washed with H2O
and brine, and dried over MgSO4. The solvent was removed in vacuo, and the
resulting crude products were purified by flash column chromatography (silica
gel; hexane/acetone/triethylamine = 95:5:2) to give 2-alkylidenethietane 1b
(56 mg, 0.293 mmol) in 93% yield. Pale yellow oil; 1H NMR (500 MHz, CDCl3) d
7.28 (2H, dd, J = 7.3, 7.5), 7.20 (1H, t, J = 7.3), 7.14–7.16 (2H, m), 4.94 (1H, ddd,
J = 2.0, 2.1, 2.2), 4.71 (1H, ddd, J = 2.2, 2.4, 2.5), 3.60–3.65 (1H, m), 3.58 (1H,
dddd, J = 2.1, 2.2, 7.1, 7.6), 3.14 (1H, dddd, J = 2.0, 2.4, 7.1, 14.8), 2.62–2.68 (1H,
m), 2.53–2.59 (1H, m), 2.07–2.20 (2H, m); 13C NMR (125 MHz, CDCl3) d 141.0,
141.0, 128.4 (overlapped), 126.0, 103.5, 43.5, 40.3, 37.9, 33.5; IR (ZnSe) 3026,
S
Me
Ph
S
DMI (degassed)
120 °C, 1.5 h
Br
Ph
Z
-7i
Z
-1i 70%
O
1.5 mol equiv. K2CO3
10 mol equiv. MeOH
R3
R3
S
Me
Ph
S
DMI (degassed)
120 °C, 1.5 h
Br
Ph
E-7i
E
-1i 62%
(R3=
n-C9H19)
2917, 2852, 1631, 1496, 1454, 1120, 1076, 1030, 831, 748, 698, 650 cmꢀ1
HRMS (FAB+) calcd for C12H15S (M+H+): 191.0894, found: 191.0867.
;
Scheme 10.
15. The stereochemistry of 1g was confirmed by the vicinal coupling constant
(J = 10.4 Hz) of the corresponding sulfone 15, which was prepared by oxidation
of 1g with m-chloroperbenzoic acid (m-CPBA) as shown below.
We envisaged that the reaction mechanism could be confirmed
by examination of the stereochemical outcomes of two reaction
pathways, that is, the inversion of the configuration for SNVr and
the retention for SNVp. Thus, the Z- and E-isomers of thioacetates
7i were used for the substitution reactions to clarify the reaction
mechanism. The syntheses of Z-7i and E-7i are shown in Scheme
9. Allene 14, synthesized from undecanoyl chloride (12) and phos-
phorous ylide 13,22 was treated with LiBr in acetic acid,23 and then
NaBH4 to afford both the Z- and E- isomers of homoallyl alcohol 3i,
which were transformed to thioacetates 7i following Scheme 5.24
The cyclization of Z-7i and E-7i yielded thietanes Z-1i and E-1i,
respectively, with complete stereospecificity (Scheme 10).25 These
results suggest that the present cyclization proceeds with reten-
tion of the configuration, namely by the SNVp mechanism.
O
m
-CPBA
S
H
J
= 10.4 Hz
NaHCO3
1g
H
CH2Cl2, rt
Ph
Ph
15 70%
16. Thioacetate 9 was prepared by the same procedure as Scheme 5 from the
corresponding alcohol, which can be synthesized by the reaction of 4-bromo-
4-pentenal with phenethylmagnesium bromide.
17. The presented calculation is the same as that in our previous articles, see Ref. 8.
18. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo,
C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi,
R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;
Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe,
M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.
GAUSSIAN 03, Revision C.02, Gaussian, Wallingford, CT, 2004.
Acknowledgment
We acknowledge the Nanyang Technological University for
funding of this research.
References and notes
19. (a) Becke, A. D. J. Chem. Phys. 1992, 96, 2155; (b) Lee, C.; Yang, W.; Parr, R. G.
Phys. Rev. B 1988, 37, 785.
20. (a) Onsager, L. J. Am. Chem. Soc. 1936, 58, 1486; (b) Wong, M. W.; Frisch, M. J.;
Wiberg, K. B. J. Am. Chem. Soc. 1991, 113, 4776.
21. DMI has almost the same dielectric constant (37.60) as DMF. Since DMF and
DMI are able to dissolve many salts and tend to surround metal cations rather
than nucleophilic anions, the use of free anions as model systems may be
suitable.
1. Hughes, E. D.; Juliusburger, F.; Masterman, S.; Topley, B.; Weiss, J. J. Chem. Soc.
1935, 1525.
2. For reviews, see: (a) Rapport, Z. Acc. Chem. Res. 1992, 25, 474; (b) Okuyama, T.;
Lodder, G. In Advances in Physical Organic Chemistry; Tidwell, T. T., Richard, J. P.,
Eds.; Academic Press: New York, 2002; Vol. 37, pp 1–56; (c) Okuyama, T. J.
Synth. Org. Chem. Jpn. 2006, 64, 348.
3. (a) Miller, S. I.; Yonan, P. K. J. Am. Chem. Soc. 1957, 79, 5931; (b) Miller, S. I. In
Advances in Physical Organic Chemistry; Gold, V., Ed.; Academic Press: New York,